Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur künstlichen Photosynthese?

09.03.2007
Direkte Aktivierung mit graphitischem Kohlenstoffnitrid macht Kohlendioxid für chemische Synthesen zugänglich

Pflanzen können es: Einfach Kohlendioxid aus der Luft aufnehmen und in Biomasse umwandeln. Für diesen als Photosynthese bezeichneten Prozess nutzen sie Licht als Energiequelle. Chemiker würden das auch gerne können, einfach CO2 als Kohlenstoffquelle für ihre Synthesen nutzen, aber das klappt nicht so ohne weiteres.

Einem Team um Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist nun ein entscheidender Schritt auf diesem Weg geglückt. Wie sie in der Zeitschrift Angewandte Chemie beschreiben, ist es ihnen gelungen, CO2 mithilfe einer speziellen neuen metallfreien Katalysatorklasse, einem graphitischen Kohlenstoffnitrid, so zu aktivieren, dass es für eine chemische Reaktion zugänglich wird.

"Die chemische Aktivierung von Kohlendioxid, d.h. dessen Spaltung in einer chemischen Reaktion", führen die Chemiker Goettmann, Thomas und Antonietti aus, "ist eine der größten Herausforderungen der Synthesechemie." Die Bindungen innerhalb des Moleküls sind sehr stabil, es ist eine sehr hohe Energie nötig, um sie zu spalten. Bisher sind nur sehr spezielle Metallkatalysatoren bekannt, die die C-O-Bindungen im CO2 spalten können.

Im Gegensatz zu den meisten bisherigen Ansätzen arbeitete das Antonietti-Team mit metallfreien Katalysatoren und orientierte sich dabei an Pflanzen: Die Photosynthese in Grünpflanzen verläuft über eine wichtige Zwischenstufe, die Bindung des CO2 an Stickstoffatome in Form so genannter Carbamate. Und so experimentierten auch die deutschen Wissenschaftler mit stickstoffreichen Katalysatoren, die so aufgebaut sind, dass sie Carbamate bilden können. Ihre neue Katalysatorklasse ist aus flachen, graphitartigen Schichten aufgebaut. Die einzelnen Schichten bestehen aus Ringsystemen von Kohlenstoff- und Stickstoffatomen. Das als graphitisches Kohlenstoffnitrid bezeichnete Material ist sehr temperaturstabil, chemisch sehr aktiv, aber so stabil, dass es sich fast immer zurückbildet: ein idealer Katalysator also. Selbst Kohlendioxid lässt sich damit aktivieren. So gelang es, Benzol (ein aromatischer Kohlenstoffsechsring) zu Phenol (trägt eine zusätzliche OH-Gruppe) zu oxidieren. Gleichzeitig entsteht Kohlenmonoxid (CO), das direkt für chemische Synthesen verwendet werden kann.

Rein formal gesehen wird bei der Reaktion CO2 in ein Sauerstoff-Diradikal und CO gespalten. Die Reaktion scheint aber wie die Photosynthese über Carbamate zu laufen: Im ersten Schritt bindet CO2 an einzeln vorhandene freie Aminogruppen des Kohlenstoffnitrids, oxidiert dann Benzol zu Phenol, und am Ende spaltet sich das verbliebene CO vom Katalysator ab. "So könnte eine neuartige, bisher unbekannte CO2-Chemie zugänglich werden," hofft Antonietti. "Vielleicht ist dies sogar der erste Schritt in Richtung einer künstlichen Photosynthese."

Angewandte Chemie: Presseinfo 10/2007

Autor: Markus Antonietti, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany), http://www.mpikg-golm.mpg.de/kc/people/Antonietti/

Angewandte Chemie 2007, 119, No. 15, doi: 10.1002/ange.200603478

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de
http://www.mpikg-golm.mpg.de/kc/people/Antonietti/

Weitere Berichte zu: Antonietti CO2 Katalysator Kohlendioxid Kohlenstoffnitrid Photosynthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops