Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur künstlichen Photosynthese?

09.03.2007
Direkte Aktivierung mit graphitischem Kohlenstoffnitrid macht Kohlendioxid für chemische Synthesen zugänglich

Pflanzen können es: Einfach Kohlendioxid aus der Luft aufnehmen und in Biomasse umwandeln. Für diesen als Photosynthese bezeichneten Prozess nutzen sie Licht als Energiequelle. Chemiker würden das auch gerne können, einfach CO2 als Kohlenstoffquelle für ihre Synthesen nutzen, aber das klappt nicht so ohne weiteres.

Einem Team um Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist nun ein entscheidender Schritt auf diesem Weg geglückt. Wie sie in der Zeitschrift Angewandte Chemie beschreiben, ist es ihnen gelungen, CO2 mithilfe einer speziellen neuen metallfreien Katalysatorklasse, einem graphitischen Kohlenstoffnitrid, so zu aktivieren, dass es für eine chemische Reaktion zugänglich wird.

"Die chemische Aktivierung von Kohlendioxid, d.h. dessen Spaltung in einer chemischen Reaktion", führen die Chemiker Goettmann, Thomas und Antonietti aus, "ist eine der größten Herausforderungen der Synthesechemie." Die Bindungen innerhalb des Moleküls sind sehr stabil, es ist eine sehr hohe Energie nötig, um sie zu spalten. Bisher sind nur sehr spezielle Metallkatalysatoren bekannt, die die C-O-Bindungen im CO2 spalten können.

Im Gegensatz zu den meisten bisherigen Ansätzen arbeitete das Antonietti-Team mit metallfreien Katalysatoren und orientierte sich dabei an Pflanzen: Die Photosynthese in Grünpflanzen verläuft über eine wichtige Zwischenstufe, die Bindung des CO2 an Stickstoffatome in Form so genannter Carbamate. Und so experimentierten auch die deutschen Wissenschaftler mit stickstoffreichen Katalysatoren, die so aufgebaut sind, dass sie Carbamate bilden können. Ihre neue Katalysatorklasse ist aus flachen, graphitartigen Schichten aufgebaut. Die einzelnen Schichten bestehen aus Ringsystemen von Kohlenstoff- und Stickstoffatomen. Das als graphitisches Kohlenstoffnitrid bezeichnete Material ist sehr temperaturstabil, chemisch sehr aktiv, aber so stabil, dass es sich fast immer zurückbildet: ein idealer Katalysator also. Selbst Kohlendioxid lässt sich damit aktivieren. So gelang es, Benzol (ein aromatischer Kohlenstoffsechsring) zu Phenol (trägt eine zusätzliche OH-Gruppe) zu oxidieren. Gleichzeitig entsteht Kohlenmonoxid (CO), das direkt für chemische Synthesen verwendet werden kann.

Rein formal gesehen wird bei der Reaktion CO2 in ein Sauerstoff-Diradikal und CO gespalten. Die Reaktion scheint aber wie die Photosynthese über Carbamate zu laufen: Im ersten Schritt bindet CO2 an einzeln vorhandene freie Aminogruppen des Kohlenstoffnitrids, oxidiert dann Benzol zu Phenol, und am Ende spaltet sich das verbliebene CO vom Katalysator ab. "So könnte eine neuartige, bisher unbekannte CO2-Chemie zugänglich werden," hofft Antonietti. "Vielleicht ist dies sogar der erste Schritt in Richtung einer künstlichen Photosynthese."

Angewandte Chemie: Presseinfo 10/2007

Autor: Markus Antonietti, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany), http://www.mpikg-golm.mpg.de/kc/people/Antonietti/

Angewandte Chemie 2007, 119, No. 15, doi: 10.1002/ange.200603478

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de
http://www.mpikg-golm.mpg.de/kc/people/Antonietti/

Weitere Berichte zu: Antonietti CO2 Katalysator Kohlendioxid Kohlenstoffnitrid Photosynthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE