Auf dem Weg zur künstlichen Photosynthese?

Pflanzen können es: Einfach Kohlendioxid aus der Luft aufnehmen und in Biomasse umwandeln. Für diesen als Photosynthese bezeichneten Prozess nutzen sie Licht als Energiequelle. Chemiker würden das auch gerne können, einfach CO2 als Kohlenstoffquelle für ihre Synthesen nutzen, aber das klappt nicht so ohne weiteres.

Einem Team um Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist nun ein entscheidender Schritt auf diesem Weg geglückt. Wie sie in der Zeitschrift Angewandte Chemie beschreiben, ist es ihnen gelungen, CO2 mithilfe einer speziellen neuen metallfreien Katalysatorklasse, einem graphitischen Kohlenstoffnitrid, so zu aktivieren, dass es für eine chemische Reaktion zugänglich wird.

„Die chemische Aktivierung von Kohlendioxid, d.h. dessen Spaltung in einer chemischen Reaktion“, führen die Chemiker Goettmann, Thomas und Antonietti aus, „ist eine der größten Herausforderungen der Synthesechemie.“ Die Bindungen innerhalb des Moleküls sind sehr stabil, es ist eine sehr hohe Energie nötig, um sie zu spalten. Bisher sind nur sehr spezielle Metallkatalysatoren bekannt, die die C-O-Bindungen im CO2 spalten können.

Im Gegensatz zu den meisten bisherigen Ansätzen arbeitete das Antonietti-Team mit metallfreien Katalysatoren und orientierte sich dabei an Pflanzen: Die Photosynthese in Grünpflanzen verläuft über eine wichtige Zwischenstufe, die Bindung des CO2 an Stickstoffatome in Form so genannter Carbamate. Und so experimentierten auch die deutschen Wissenschaftler mit stickstoffreichen Katalysatoren, die so aufgebaut sind, dass sie Carbamate bilden können. Ihre neue Katalysatorklasse ist aus flachen, graphitartigen Schichten aufgebaut. Die einzelnen Schichten bestehen aus Ringsystemen von Kohlenstoff- und Stickstoffatomen. Das als graphitisches Kohlenstoffnitrid bezeichnete Material ist sehr temperaturstabil, chemisch sehr aktiv, aber so stabil, dass es sich fast immer zurückbildet: ein idealer Katalysator also. Selbst Kohlendioxid lässt sich damit aktivieren. So gelang es, Benzol (ein aromatischer Kohlenstoffsechsring) zu Phenol (trägt eine zusätzliche OH-Gruppe) zu oxidieren. Gleichzeitig entsteht Kohlenmonoxid (CO), das direkt für chemische Synthesen verwendet werden kann.

Rein formal gesehen wird bei der Reaktion CO2 in ein Sauerstoff-Diradikal und CO gespalten. Die Reaktion scheint aber wie die Photosynthese über Carbamate zu laufen: Im ersten Schritt bindet CO2 an einzeln vorhandene freie Aminogruppen des Kohlenstoffnitrids, oxidiert dann Benzol zu Phenol, und am Ende spaltet sich das verbliebene CO vom Katalysator ab. „So könnte eine neuartige, bisher unbekannte CO2-Chemie zugänglich werden,“ hofft Antonietti. „Vielleicht ist dies sogar der erste Schritt in Richtung einer künstlichen Photosynthese.“

Angewandte Chemie: Presseinfo 10/2007

Autor: Markus Antonietti, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany), http://www.mpikg-golm.mpg.de/kc/people/Antonietti/

Angewandte Chemie 2007, 119, No. 15, doi: 10.1002/ange.200603478

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Dr. Renate Hoer idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer