Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jungbrunnen - Molekularer Schalter hält Muskelstammzellen "frisch"- Bessere Heilung nach Muskelverletzung

09.03.2007
Muskeln können nach Verletzungen auch bei Erwachsenen sehr gut heilen, weil sie einen Vorrat an Muskelstammzellen, so genannten Satellitenzellen haben, auf den sie für die Reparatur zurückgreifen können. Bisher war unklar, wie sich dieser Vorrat an Satellitenzellen und auch an Muskelvorläuferzellen, aus denen sich sowohl Muskeln als auch Satellitenzellen entwickeln, "frisch" hält.

Die Entwicklungsbiologinnen Prof. Carmen Birchmeier, Dr. Elena Vasyutina und Diana Lenhard vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch haben jetzt gezeigt, dass ein molekularer Schalter, kurz RBP-J genannt, diesen "Jungbrunnen" unter Kontrolle hat. Fehlt der Schalter, bilden die Satellitenzellen unkontrolliert Muskelzellen, wobei auch das Satellitenzell-Depot leer geräumt wird. Die Folge davon ist, dass sich während der Entwicklungsphase eines Lebewesens zuwenig Muskeln bilden, und der Fetus kein Satellitenzellen-Depot mehr anlegen kann. Die Arbeit der MDC Forscherinnen, die für die künftige Entwicklung von Stammzelltherapien Bedeutung haben könnte, ist jetzt in den Proceedings der National Academy of Sciences (PNAS)* online erschienen.


Jungbrunnen für Muskelzellen: Selbst Muskeln von Erwachsenen heilen leichter, weil sie über ein Reservoir von Stammzellen, auch Satellitenzellen genannt (rot markiert), verfügen. "Frisch" halten sie sich in ihrem Depot zwischen der Membran der Muskelzellen und der sie umgebenden Schicht dank eines Moleküls, dessen Funktion MDC-Forscherinnen jetzt aufgeklärt haben. (Photo: Dr. Elena Vasyutina/Copyright: MDC)

Muskelstammzellen sind Anfang der sechziger Jahre des vergangenen Jahrhundert entdeckt worden. Lange Zeit konnten Forscher sie nur mit Hilfe des Elektronenmikroskops identifizieren. Sie befinden sich zwischen der Hülle (Membran) der Muskelzelle und der sie umgebenden Schicht, der Basalmembran. Seit einiger Zeit sind nun Oberflächenmoleküle und Transkriptionsfaktoren bekannt, die charakteristisch für diese Satellitenzellen sind, und die es Forschern erlauben, diese Zellen leichter ausfindig zu machen.

Der Schalter RBP-J ist eingebunden in einen für die Zellkommunikation sehr wichtigen Signalweg, den Notch-Signalweg, und galt bisher schon als bedeutender Informationsvermittler. Der Signalweg spielt sowohl bei der Entwicklung eines Lebewesens als auch im erwachsenen Organismus eine wichtige Rolle. Der Nachweis der Forscherinnen, dass Satellitenzellen und Muskelvorläuferzellen ihren Stammzellcharakter behalten, weil RBP-J sie in ihrem frühen Entwicklungsstadium verharren lässt, gewinnt vor dem Hintergrund bisheriger Versuche von Stammzelltherapien eine besondere Bedeutung. So hatten verschiedene Forscher bereits gezeigt, dass sich Muskeln sehr gut regenerieren, wenn sie Mäusen die Satellitenzellen direkt in den Muskel spritzen. Weiter füllen die Muskeln damit auch ihren Vorrat an Satellitenzellen wieder auf. Eine Beeinflussung von RBP-J könnte Therapien, die auf Satellitenzellen basieren, verbessern.

*RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells

Elena Vasyutina1*, Diana C. Lenhard1*, Hagen Wende1, Bettina Erdmann1, Jonathan A. Epstein2, and Carmen Birchmeier1#

1Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany

2 Department of Cell and Developmental Biology and the Cardiovascular Institute, University of Pennsylvania, 954 BRB II, 421 Curie Boulevard, Philadelphia, PA 19104, USA

*These authors contributed equally to the work
#Corresponding author: Carmen Birchmeier; Phone: +49-30-9406 2403, Fax: +49-30-9406 3765; E-mail: cbirch@mdc-berlin.de
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | MDC-Berlin
Weitere Informationen:
http://www.pnas.org/
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Muskeln Muskelstammzelle RBP-J Satellitenzellen Schalter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics