Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Gene nicht entpackt werden können: Mausmodell für gestörten Histonstoffwechsel etabliert

07.03.2007
Gene liegen im Zellkern meist sorgfältig verpackt vor: Die entsprechenden Abschnitte der fadenförmigen DNA werden platzsparend um kleine Proteine - die Histone - gewickelt. Insbesondere nicht aktive Gene sind oft besonders dicht verpackt.

Durch bestimmte Enzyme - sogenannte Histon-Acetyltransferasen (HAT) - wird die Bindung der Histone an die DNA vermindert, sodass die Gene entpackt und aktiviert werden können. Gegenspieler der HATs sind die Histondeacetylasen (HDACs), die die Verpackung und Inaktivierung von Genen verstärken und an vielen regulatorischen Prozessen beteiligt sind. Mäuse, die keine HDACs produzieren, sind wertvolle Modellorganismen, die verstehen helfen, welche Bedeutung HDACs für die Entstehung von Krankheiten haben, und welcher Nutzen von HDAC-hemmenden Medikamenten zu erwarten ist.

Wissenschaftlern des GSF - Forschungszentrums für Umwelt und Gesundheit (GSF), Mitglied der Helmholtz-Gemeinschaft, gelang es, eine Mauslinie zu erstellen, bei der das Gen für die Produktion einer der HDACs, der Histondeacetylase 2 (HDAC2), ausgeschaltet ist. Die Folgen dieses Defekts machen die Mäuse sowohl für die Krebs- als auch für die Herzforschung interessant.

"Es gibt elf klassische Deacetylasen. Die Kunst ist, herauszufinden, welche Deacetylasen welche Prozesse kontrollieren", erklärt Professor Dr. Martin Göttlicher, der Leiter des GSF-Instituts für Toxikologie, der gemeinsam mit Wissenschaftlern des GSF-Instituts für Entwicklungsbiologie (IDG) die Etablierung der HDAC2-defizienten Mauslinie anregte.

... mehr zu:
»Gen »HDAC2 »HDACs »Mauslinie

Göttlicher selbst interessiert sich für Regulationsmechanismen, die zur Entstehung von Dickdarmtumoren führen - hier spielt HDAC2 wohl eine Rolle. Bereits von einigen anderen Tumoren ist bekannt, dass die durch Histondeacetylase verstärkte Verpackung offenbar Gene inaktivierte, die normalerweise die Zellen in den programmierten Zelltod (Apoptose) treiben. HDAC-Inhibitoren könnten eventuell die Apoptose wieder aktivieren und so das Tumorwachstum stoppen.

HDAC2 ist aber auch noch an anderen Prozessen beteiligt, z.B. beim Wachstum von Herzzellen. Deshalb kooperieren die GSF-Wissenschaftler auch mit einer amerikanischen Forschergruppe um Professor Jonathan Epstein (University of Pennsylvania), die besonders diesen Aspekt untersucht. Gemeinsam berichten die Wissenschaftler nun in der Fachzeitschrift Nature Medicine, dass HDAC2 bei der Entstehung einer krankhaften Vergrößerung des Herzens - der Herzhypertrophie - eine Rolle spielt. Wird das Herz z.B. durch Stress oder Überanstrengung überlastet, reagiert es durch Wachstum - es wird immer größer, dabei aber nicht effizienter. Letztendlich kann dies zur Herzinsuffizienz führen. Offensichtlich ist HDAC2 an dieser tödlichen Spirale beteiligt, denn die HDAC2-defizienten Mäuse zeigten auch bei starker Belastung keine Vergrößerung des Herzens. HDAC2 greift in einen Signalweg ein, der notwendig ist, um das hypertrophe Wachstum auszulösen. "Wenn man einen Weg findet, HDAC2 spezifisch zu hemmen, kann man eventuell ein Medikament gegen diese Krankheit entwickeln", hofft Göttlicher.

Man darf nun aber nicht schließen, dass HDAC2 Aktivität ausschließlich nachteilig ist", erklärt Dr. Thomas Floss (IDG), der die Mauslinie mit Hilfe der an der GSF gut etablierten Gene-Trap-Technologie erstellte: "Die Mäuse zeigen ohne HDAC2 verschiedene Beeinträchtigungen, sie sind z.B. deutlich kleiner als ihre Wildtyp-Geschwister". Offensichtlich greift HDAC2 - wie alle Histondeacetylasen - in fein abgestimmte Regelkreise ein. Deshalb ist es für potenzielle therapeutische Ansätze vermutlich wichtig, Hemmstoffe zu finden, die nur ganz bestimmte HDACs selektiv ausschalten. "Die Frage ist, mit welchen einzelnen HDACs man interferieren muss, um Krankheiten zu bekämpfen, ohne dass andere für die Gesundheit wichtige Prozesse gestört werden", betont Göttlicher - und die GSF-Mäuse sollen helfen, diese Frage zu lösen.

Online-Publikation: Nature Medicine, 18 February 2007; | doi:10.1038/nm1552
Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3ß activity;
Chinmay M Trivedi, Yang Luo, Zhan Yin, Maozhen Zhang, Wenting Zhu, Tao Wang, Thomas Floss, Martin Goettlicher, Patricia Ruiz Noppinger, Wolfgang Wurst, Victor A Ferrari, Charles S Abrams, Peter J Gruber & Jonathan A Epstein
Kontakt zur GSF- Pressestelle:
GSF - Forschungszentrum für Umwelt und Gesundheit, Dipl.-Ing. Heinz-Jörg Haury, Abteilung Kommunikation, Pressesprecher Tel: 089/3187-2460, Fax 089/3187-3324, E-Mail: oea@gsf.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de/neu/Aktuelles/Presse/2007/histone.php

Weitere Berichte zu: Gen HDAC2 HDACs Mauslinie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten