Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Gene nicht entpackt werden können: Mausmodell für gestörten Histonstoffwechsel etabliert

07.03.2007
Gene liegen im Zellkern meist sorgfältig verpackt vor: Die entsprechenden Abschnitte der fadenförmigen DNA werden platzsparend um kleine Proteine - die Histone - gewickelt. Insbesondere nicht aktive Gene sind oft besonders dicht verpackt.

Durch bestimmte Enzyme - sogenannte Histon-Acetyltransferasen (HAT) - wird die Bindung der Histone an die DNA vermindert, sodass die Gene entpackt und aktiviert werden können. Gegenspieler der HATs sind die Histondeacetylasen (HDACs), die die Verpackung und Inaktivierung von Genen verstärken und an vielen regulatorischen Prozessen beteiligt sind. Mäuse, die keine HDACs produzieren, sind wertvolle Modellorganismen, die verstehen helfen, welche Bedeutung HDACs für die Entstehung von Krankheiten haben, und welcher Nutzen von HDAC-hemmenden Medikamenten zu erwarten ist.

Wissenschaftlern des GSF - Forschungszentrums für Umwelt und Gesundheit (GSF), Mitglied der Helmholtz-Gemeinschaft, gelang es, eine Mauslinie zu erstellen, bei der das Gen für die Produktion einer der HDACs, der Histondeacetylase 2 (HDAC2), ausgeschaltet ist. Die Folgen dieses Defekts machen die Mäuse sowohl für die Krebs- als auch für die Herzforschung interessant.

"Es gibt elf klassische Deacetylasen. Die Kunst ist, herauszufinden, welche Deacetylasen welche Prozesse kontrollieren", erklärt Professor Dr. Martin Göttlicher, der Leiter des GSF-Instituts für Toxikologie, der gemeinsam mit Wissenschaftlern des GSF-Instituts für Entwicklungsbiologie (IDG) die Etablierung der HDAC2-defizienten Mauslinie anregte.

... mehr zu:
»Gen »HDAC2 »HDACs »Mauslinie

Göttlicher selbst interessiert sich für Regulationsmechanismen, die zur Entstehung von Dickdarmtumoren führen - hier spielt HDAC2 wohl eine Rolle. Bereits von einigen anderen Tumoren ist bekannt, dass die durch Histondeacetylase verstärkte Verpackung offenbar Gene inaktivierte, die normalerweise die Zellen in den programmierten Zelltod (Apoptose) treiben. HDAC-Inhibitoren könnten eventuell die Apoptose wieder aktivieren und so das Tumorwachstum stoppen.

HDAC2 ist aber auch noch an anderen Prozessen beteiligt, z.B. beim Wachstum von Herzzellen. Deshalb kooperieren die GSF-Wissenschaftler auch mit einer amerikanischen Forschergruppe um Professor Jonathan Epstein (University of Pennsylvania), die besonders diesen Aspekt untersucht. Gemeinsam berichten die Wissenschaftler nun in der Fachzeitschrift Nature Medicine, dass HDAC2 bei der Entstehung einer krankhaften Vergrößerung des Herzens - der Herzhypertrophie - eine Rolle spielt. Wird das Herz z.B. durch Stress oder Überanstrengung überlastet, reagiert es durch Wachstum - es wird immer größer, dabei aber nicht effizienter. Letztendlich kann dies zur Herzinsuffizienz führen. Offensichtlich ist HDAC2 an dieser tödlichen Spirale beteiligt, denn die HDAC2-defizienten Mäuse zeigten auch bei starker Belastung keine Vergrößerung des Herzens. HDAC2 greift in einen Signalweg ein, der notwendig ist, um das hypertrophe Wachstum auszulösen. "Wenn man einen Weg findet, HDAC2 spezifisch zu hemmen, kann man eventuell ein Medikament gegen diese Krankheit entwickeln", hofft Göttlicher.

Man darf nun aber nicht schließen, dass HDAC2 Aktivität ausschließlich nachteilig ist", erklärt Dr. Thomas Floss (IDG), der die Mauslinie mit Hilfe der an der GSF gut etablierten Gene-Trap-Technologie erstellte: "Die Mäuse zeigen ohne HDAC2 verschiedene Beeinträchtigungen, sie sind z.B. deutlich kleiner als ihre Wildtyp-Geschwister". Offensichtlich greift HDAC2 - wie alle Histondeacetylasen - in fein abgestimmte Regelkreise ein. Deshalb ist es für potenzielle therapeutische Ansätze vermutlich wichtig, Hemmstoffe zu finden, die nur ganz bestimmte HDACs selektiv ausschalten. "Die Frage ist, mit welchen einzelnen HDACs man interferieren muss, um Krankheiten zu bekämpfen, ohne dass andere für die Gesundheit wichtige Prozesse gestört werden", betont Göttlicher - und die GSF-Mäuse sollen helfen, diese Frage zu lösen.

Online-Publikation: Nature Medicine, 18 February 2007; | doi:10.1038/nm1552
Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3ß activity;
Chinmay M Trivedi, Yang Luo, Zhan Yin, Maozhen Zhang, Wenting Zhu, Tao Wang, Thomas Floss, Martin Goettlicher, Patricia Ruiz Noppinger, Wolfgang Wurst, Victor A Ferrari, Charles S Abrams, Peter J Gruber & Jonathan A Epstein
Kontakt zur GSF- Pressestelle:
GSF - Forschungszentrum für Umwelt und Gesundheit, Dipl.-Ing. Heinz-Jörg Haury, Abteilung Kommunikation, Pressesprecher Tel: 089/3187-2460, Fax 089/3187-3324, E-Mail: oea@gsf.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de/neu/Aktuelles/Presse/2007/histone.php

Weitere Berichte zu: Gen HDAC2 HDACs Mauslinie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie