Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Flöße gegen Anthrax

07.03.2007
Erhöhte Wirksamkeit: Mit Anthrax-Hemmstoffmolekülen angereicherte Mikro-Domänen schwimmen auf Liposomen

Ob als Biowaffe missbraucht oder "nur" in Form der Tierseuche - Anthrax, der Milzbrand, ist eine ernstzunehmende Bedrohung. Ein kanadisch-amerikanisches Team hat nun eine Methode entwickelt, um die Wirksamkeit eines Anthratoxin-Hemmstoffs zu erhöhen, wie sie in der Zeitschrift Angewandte Chemie beschreiben: Die Wissenschaftler um Jeremy Mogridge (University of Toronto) und Ravi S. Kane (Resselaer Polytechnic Institute, Troy, NY, USA) bauen die Wirkstoffmoleküle so in Liposomen ein, dass diese sich in einzelnen Domänen anreichern, auf denen sie wie auf winzigen Flößen auf der Liposomen-Oberfläche "schwimmen".

Die fatale Wirkung der Anthrax-Erreger beruht auf dem Zusammenwirken dreier verschiedener Gifte: EF (Ödemischer Faktor), LF (Lethaler Faktor) und PA (Protektives Antigen). PA geleitet die beiden anderen Giftstoffe in die Zelle, LF zerstört die weißen Blutkörperchen des befallenen Organismus. Wird die Bindung von LF an PA unterbunden, kann dieser nicht mehr in die Zellen eindringen, und das Fortschreiten der Krankheit wird gestoppt.

Vor einiger Zeit wurde ein Peptid entwickelt, das an PA bindet und damit die Bindung von LF blockiert. Dazu müssen mehrere Peptidmoleküle an PA andocken. Um die Peptide zu "bündeln" wurden sie an ein Lipid (Fettmolekül) angeknüpft und diese Fettmoleküle in Liposomen, winzige Fettbläschen, eingebaut. Dabei muss eine bestimmte Konzentrationsschwelle an Peptid pro Liposom überschritten sein, denn die Peptidmoleküle müssen mindestens so nah beeinander sein, wie es der Entfernung zwischen den einzelnen Peptidbindestellen auf dem PA entspricht.

... mehr zu:
»Anthrax »Fettmolekül »Liposom »Peptid

Das Team um Mogridge und Kane wollte die Peptide weiter zusammenrücken lassen und so die notwendige Konzentration weiter verringern. Die Hülle von Liposomen besteht, wie natürliche Zellmenbranen, aus einer Art zweidimensionaler Flüssigkeit aus Fettmolekülen. Die Zusammensetzung natürlicher Zellmembranen ist dabei nicht gleichmäßig, es finden sich winzige Domänen mit unterschiedlicher Zusammensetzung, die eine wichtige Rolle bei vielen physiologischen Prozessen spielen. Das geht auch bei Liposomen, wenn diese aus gesättigten und ungesättigten Fetten sowie 20 % Cholesterin hergestellt werden. So entstehen zwei verschiedene Phasen. Das Peptid reichert sich in einer der beiden an und "schwimmt" dann, dicht bei dicht, wie auf winzigen "Flößen" auf der Liposomenoberfläche. Die Anthrax-hemmende Wirkung der Peptide konnte auf diese Weise deutlich verstärkt werden.

Alternativ können die Mikrodomänen auch durch einen externen Stimulus, wie eine veränderte Ionenkonzentration, Temperatur, Licht oder Enzyme, erzeugt werden: So bilden etwa Liposomen, die das Lipid Phosphatidylserin (PS) enthalten, PS-reiche Domänen, sobald Calcium-Ionen zugegeben werden - eine Möglichkeit, Hemmstoffe erst am richtigen Zielort zu aktivieren.

Angewandte Chemie: Presseinfo 09/2007

Autor: Ravi S. Kane, Rensselaer Polytechnic Institute, Troy (USA), http://www.rpi.edu/%7Ekaner/

Angewandte Chemie 2007, 119, No. 13, 2257-2259, doi: 10.1002/ange.200604317

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de

Weitere Berichte zu: Anthrax Fettmolekül Liposom Peptid

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics