Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Methusalem-Genom" hilft Krebs bekämpfen

25.02.2002


Forscher finden im Genom eines evolutionär sehr alten Einzellers überraschend Gene, die beim Menschen für Krebs und andere Krankheiten eine Rolle spielen

Ein europäisches Forschungskonsortium, zu dem auch das Berliner Max-Planck-Institut für molekulare Genetik gehört, hat gemeinsam mit dem Sanger-Centre in Hinxton/Cambridge, UK den genetischen Code der Spalthefe (Schizosaccharomyces pombe) komplett entschlüsselt (nature, 21. Februar 20029. Schizosaccharomyces pombe ist das sechste eukaryontische Genom, das sequenziert wurde nach S. cerevisiae (Bäckerhefe), Caenorhabditis elegans (Fadenwurm), Drosophila melanogaster (Fruchtfliege), Arabidopsis thaliana (Ackerschmalwand) und Homo sapiens (Mensch). Die Entschlüsselung und - erstmals - auch komplette Annotation eines eukaryontischen Genoms hat große Bedeutung für die Erforschung von Krebs und anderen Krankheiten, denn die Forscher fanden überraschend unter den 4.824 Genen dieses bereits vor einer Milliarde Jahre entstandenen Organismus 50 Gene, die direkt mit menschlichen Krankheiten im Zusammenhang stehen, die Hälfte davon mit Krebs.

Schizosaccharomyces pombe ist ein einzelliger, frei lebender Pilz, der viele Eigenschaften mit den Zellen wesentlich komplizierterer, mehrzelliger Eukaryonten gemeinsam hat. Aus Vergleichen von Gensequenzen und phylogenetischen Analysen weiß man, dass sich die Spalthefe von der Bäckerhefe vor etwa 330 - 420 Millionen Jahren, und von den Metazoen und den Pflanzen bereits vor etwa 1 - 1,2 Mrd. Jahren wegentwickelt hat. S. pombe wurde erstmals 1890 beschrieben und seit den 1950er Jahren extensiv untersucht, so dass bereits mehr als 1.200 seiner Gene charakterisiert werden konnten.

Jetzt, nach Abschluss seiner Sequenzierung, steht fest: Das Genom von S. pombe enthält mit 4.824 die kleinste Zahl an Genen, die bisher in einem Eukaryonten, also einem Lebewesen, dessen DNA sich wie bei uns im Zellkern befindet, festgestellt wurde. S. pombe hat damit sogar weniger Gene als manches Bakterium, wie Streptomyces coelicolor, dass üblicherweise als einfachste Lebensform auf der Erde angesehen wird. Doch das Genom hat noch eine andere Besonderheit: Es ist extrem kompakt, d.h. die Abstände zwischen den einzelnen Genen sind vergleichsweise gering (nur 400 - 1000 Basenpaare), es gibt viel weniger "junk DNA", wie die Experten sagen. So fanden sie nur 33 Pseudo-Gene (der Mensch hat viele Tausende davon), und jedes Gen ist durchschnittlich nur 1400 Basenpaare (bei uns sind es über 30.000) lang. Über 60 Prozent der sequenzierten Basen vom S. pombe Genom codieren Proteine, beim Menschen sind es nur 2 Prozent. Auf durchschnittlich 2500 Basenpaare kommt bei diesem Einzeller ein Gen, zum Vergleich: beim Menschen auf 100.000 Basenpaare. Daraus schlussfolgern die Wissenschaftler unter anderem, dass mehr programmatische Flexibilität und damit mehr DNA im Genom erst beim Übergang von einfachen zu höheren Lebensformen benötigt wird.

Dr. Richard Reinhardt, Arbeitsgruppenleiter am Max-Planck-Institut für molekulare Genetik, und einer der Mitautoren der Nature-Veröffentlichung, sagt über die Qualität des jetzt erfolgreich abgeschlossenen Genomprojekts: "Mit S. pombe haben wir erstmals einen komplexen Organismus, dessen Genom wir nicht nur komplett sequenzieren, sondern dessen Gene wir auch komplett annotieren konnten. Zum Vergleich: Beim Humangenom kennen wir die Anfangs- und Endpunkte der einzelnen Gene exakt erst bei einigen Inseln, wie z.B. dem Chromosom 21. Erst im Jahr 2004/2005 wird man international auch dort die Gene genau bestimmt haben."

Doch dank der Ähnlichkeiten in der Sequenz des Genoms konnten die Wissenschaftler - vor allem durch Vergleiche in den Genom-Datenbanken der Bäckerhefe sowie des Menschen - bereits auch recht zuverlässige Aussagen zur Funktion verschiedener Gene machen. Hierbei identifizierten sie Gene, die sehr wichtig für die Zellorganisation bei Eukaryonten sind und offensichtlich bereits über einen extrem langen Zeitraum (1 Mrd. Jahre) konserviert geblieben sind. Reinhardt: "Es war schon sehr erstaunlich, bei einer in der Evolution so früh entstandenen Lebensform Gene zu entdecken, die den Genen beim Menschen so ähnlich sind." Darunter sind solche, die für das Zytoskelett, die Zellstruktur und -bewegung, die Zellteilung, den Proteinumsatz und die Proteinaktivierung von Bedeutung sind. Diese Gene dürften also bereits mit dem Aufkommen der ersten eukaryontischen Lebensformen entstanden sein. Hingegen wurden nur wenige in gleicher Weise erhalten gebliebene Gene gefunden, die für die Organisation in Mehrzellern notwendig sind. Deshalb vermuten die Wissenschaftler, dass der Übergang von den Prokaryonten zu den Eukaryonten mehr neue Gene erfordert hat als der Übergang vom Ein- zum Vielzeller.

Komplexitätsstufe des Lebens Zahl der Gene Modellorganismus
Zelle eines Parasiten 500 Mycoplasma genitalium
Freilebende Bakterienzelle 1.500 Aquifex aeolius
Freilebende Zelle mit Zellkern 5.000 S. pombe
Mehrzelliger Organismus 15.000 Drosophila M., C. elegans
Mensch 30.000 Homo sapiens

Abb.: Zusammenhang zwischen Gen-Menge und dem Entstehen neuer Qualitäten beim Übergang von einfachen Einzellern zu komplexen vielzelligen Lebewesen.

Unter den 4.824 Genen von S. pombe sind - zur völligen Überraschung für die Wissenschaftler - auch 50, die beim Menschen eng im Zusammenhang mit bestimmten Krankheiten (zystische Fibrose, erbliche Taubheit und nicht Insulin abhängige Diabetes) auftreten, davon allein die Hälfte bei Krebs. Von daher wird S. pombe nun plötzlich zu einem sehr interessanten Modellorganismus für die Krebsforschung. Am Beispiel des S. pombe-Projekts wird somit deutlich, wie wichtig grundlegende Untersuchungen in der Genom-Forschung sind. Max-Planck-Forscher Reinhardt dazu: "Man sieht hier, würde die Genomforschung lediglich von der Sicht geprägt, nur die Suche nach krankheitsrelevanten Genen mache Sinn, könnten Erkenntnisse wie bei S. pombe nicht gewonnen werden. Denn es war für niemanden vorhersehbar, dass wir gerade bei einem so alten und gleichzeitig so einfachen Organismus wie S. pombe auf Gene stoßen würden, die beim Menschen in einem klaren Zusammenhang zu Krankheiten wie Krebs stehen."

Doch jetzt wird S. pombe den Forschern helfen, Krebs und andere Krankheiten besser zu verstehen und auch zu heilen. Denn Hefe-Zellen sind viel einfacher zu studieren als menschliche Zellen. Von daher kann man an ihrem Modell viel schneller verstehen, was von den einzelnen Genen gesteuert wird und wie einzelne Gene an der Entstehung von Krebs oder anderen Krankheiten beteiligt sind. Grundsätzlich zeigt dieses Projekt, dass internationale Kooperation und die gemeinsame Nutzung der Genom-Daten zu Sequenz- und Analyseergebnissen von höchster Qualität führen. Prof. Hans Lehrach, Direktor am Max-Planck-Institut für molekulare Genetik, sagt dazu: "Dank unserer gemeinsamen Anstrengungen ist das S. pombe-Genom jetzt eines der am besten annotierten nicht-bakteriellen Genome überhaupt. An Hand dieses winzigen Organismus können jetzt Funktionen in viel komplexeren (z.B. menschlichen) Zellen verstanden werden, damit wir letztlich die Funktionsweise von uns selbst und unseren Platz in der Evolution besser verstehen können."

Dr. Richard Reinhardt | Presseinformation
Weitere Informationen:
http:///www.mpg.de/pri02/pri0214.htm

Weitere Berichte zu: Basenpaare Eukaryonten Gen Genom Lebensform Organismus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie