Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirn arbeitet chaotischer als angenommen

27.02.2007
Das Gehirn verarbeitet Informationen augenscheinlich chaotischer als bislang angenommen. Das zeigen Wissenschaftler der Universität Bonn in einer aktuellen Studie.

Die Weiterleitung der Informationen von Neuron zu Neuron erfolgt demnach nicht ausschließlich an den so genannten Synapsen - das sind die Kontaktstellen zwischen den Nervenzell-Fortsätzen. Anscheinend schütten die Neuronen auch auf der ganzen Länge dieser Fortsätze Botenstoffe aus und erregen so benachbarte Zellen.

Die Ergebnisse werfen nicht nur grundlegende Vorstellungen über den Haufen, wie unser Gehirn funktioniert. Sie könnten auch zur Entwicklung neuer Medikamente beitragen. Die Studie erscheint in Kürze in der renommierten Zeitschrift "Nature Neuroscience", ist aber schon online abrufbar (doi:10.1038/nn1850).

Bisher schien alles ganz klar: Nervenzellen empfangen ihre Signale mit kurzen "Zellärmchen", den so genannten Dendriten. Diese leiten die elektrischen Impulse zum Zellkörper, wo sie verarbeitet werden. Für die "Verteilung" des Resultats sind die Axone zuständig: Das sind lange kabelartige Zellausläufer, in denen die elektrischen Signale entlanglaufen, bis sie an einer Synapse auf das Dendrit-Ärmchen eines anderen Neurons treffen. Für die elektrischen Nervenzellpulse stellt die Synapse eine unüberwindbare Barriere dar. Daher kommt es dort zu einer wundersamen Signal-Umwandlung: Die Synapse schüttet Botenstoffe aus, so genannte Neurotransmitter, die zum Dendriten diffundieren. Dort docken sie an bestimmte Rezeptoren an und erzeugen so wieder elektrische Impulse. "Bisher nahm man an, dass nur an Synapsen Neurotransmitter ausgeschüttet werden", betont der Bonner Privatdozent Dr. Dirk Dietrich. "Das scheint nach unseren Erkenntnissen aber nicht zu stimmen."

Botenstoff lockt Isolierzellen an

Zusammen mit seinen Kolleginnen Dr. Maria Kukley und Dr. Estibaliz Capetillo-Zarate hat Dietrich die "weiße Substanz" im Gehirn von Ratten genauer untersucht. Hier liegen die "Kabelschächte", die rechte und linke Hirnhälfte miteinander verbinden. Sie bestehen im wesentlichen aus Axonen und Hilfszellen. Dendriten oder gar Synapsen gibt es dort keine. "Man würde dort also auch keine Botenstoff-Freisetzung erwarten", betont der Hirnforscher.

Dennoch machten die Wissenschaftler in der weißen Substanz eine merkwürdige Entdeckung: Sobald ein elektrischer Impuls durch ein Axon-Kabel läuft, wandern kleine Bläschen mit Glutamat zur Axon-Membran und entlassen ihren Inhalt ins Gehirn. Glutamat ist einer der wichtigsten Neurotransmitter und wird auch bei der Signalweiterleitung an Synapsen ausgeschüttet. Die Forscher konnten sogar nachweisen, dass bestimmte Zellen in der weißen Substanz auf das Glutamat reagierten: Die Vorläufer der so genannten Oligodendrozyten. Oligodendrozyten sind die "Isolierzellen" des Gehirns: Sie produzieren das Myelin, eine Art Fettschicht, die die Axone umhüllt und für eine schnellere Signalweiterleitung sorgt. "Wahrscheinlich orientieren sich noch unreife Isolierzellen mit Hilfe des Glutamats, um Axone zu finden und sie mit einer Myelinschicht zu umhüllen", vermutet Dirk Dietrich.

Sobald die Axone den weißen "Kabelschacht" verlassen, treten sie in die graue Gehirnsubstanz ein und treffen dort auf ihre Empfänger-Dendriten. Dort erfolgt an den Synapsen die Weitergabe der Information an die Empfängerzelle. "Wir halten es jedoch für wahrscheinlich, dass die Axone auch außerhalb von Synapsen auf ihrem Weg durch die graue Substanz Glutamat freisetzen", spekuliert Dietrich. "Hier liegen Nervenzellen und Dendriten dicht an dicht. Das Axon könnte so also nicht nur den eigentlichen Empfänger, sondern auch noch zahlreiche weitere Nervenzellen erregen."

Sollte diese These stimmen, muss die seit über hundert Jahren gültige Lehrmeinung zur Kommunikation von Neuronen revidiert werden. 1897 prägte Sir Charles Sherrington die Idee, dass nur an den Synapsen Botenstoffe freigesetzt werden. Laut dem Begründer der modernen Neurophysiologie können Nervenzellen daher nur mit wenigen Nervenzellen kommunizieren: nämlich nur mit denjenigen, mit denen sie über Synapsen verbunden sind. Auf diesem Konzept beruht die Vorstellung, dass sich neuronale Information im Gehirn ähnlich wie Strom in einem Computer gerichtet und nur entlang bestimmter geordneter Schaltkreisen ausbreitet.

Zuviel Glutamat ist der Zellen Tod

Die Entdeckung des Forscherteams hat aber noch einen medizinisch interessanten Aspekt: Es ist schon lange bekannt, dass bei Sauerstoffmangel oder heftigen epileptischen Anfällen zahlreiche Isolierzellen in der weißen Substanz zugrunde gehen. Auslöser der Schäden ist ein alter Bekannter: Der Neurotransmitter Glutamat. "Niemand wusste bislang jedoch, wo das Glutamat herkommt", sagt Dr. Dietrich. "Unsere Ergebnisse eröffnen vielleicht völlig neue Therapieoptionen." Denn schon heute gibt es Medikamente, die verhindern, dass Glutamatbläschen ihre Fracht ins Gehirn abgeben. Auch wissen die Bonner Neurowissenschaftler inzwischen genau, welche Rezeptoren der Isolierzellen der Neurotransmitter stimuliert - ebenfalls ein Ansatzpunkt für neue Arzneien.

Doch warum ist Glutamat mitunter so gefährlich? Bei einem Epilepsie-Anfall "feuern" die Nervenzellen sehr schnell und heftig. Dann laufen so viele Impulse durch die Axone, dass auf einen Schlag große Mengen Glutamat frei werden. "In diesen Konzentrationen schädigt der Botenstoff die Isolierzellen", sagt Dietrich. "Die Dosis macht das Gift."

Kontakt:
PD Dr. Dirk Dietrich
Klinik für Neurochirurgie
Telefon: 0228/287-19224 oder -16590
E-Mail: dirk.dietrich@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Axon Botenstoff Dendrit Glutamat Isolierzellen Nervenzelle Neuron Neurotransmitter Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz