Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirn arbeitet chaotischer als angenommen

27.02.2007
Das Gehirn verarbeitet Informationen augenscheinlich chaotischer als bislang angenommen. Das zeigen Wissenschaftler der Universität Bonn in einer aktuellen Studie.

Die Weiterleitung der Informationen von Neuron zu Neuron erfolgt demnach nicht ausschließlich an den so genannten Synapsen - das sind die Kontaktstellen zwischen den Nervenzell-Fortsätzen. Anscheinend schütten die Neuronen auch auf der ganzen Länge dieser Fortsätze Botenstoffe aus und erregen so benachbarte Zellen.

Die Ergebnisse werfen nicht nur grundlegende Vorstellungen über den Haufen, wie unser Gehirn funktioniert. Sie könnten auch zur Entwicklung neuer Medikamente beitragen. Die Studie erscheint in Kürze in der renommierten Zeitschrift "Nature Neuroscience", ist aber schon online abrufbar (doi:10.1038/nn1850).

Bisher schien alles ganz klar: Nervenzellen empfangen ihre Signale mit kurzen "Zellärmchen", den so genannten Dendriten. Diese leiten die elektrischen Impulse zum Zellkörper, wo sie verarbeitet werden. Für die "Verteilung" des Resultats sind die Axone zuständig: Das sind lange kabelartige Zellausläufer, in denen die elektrischen Signale entlanglaufen, bis sie an einer Synapse auf das Dendrit-Ärmchen eines anderen Neurons treffen. Für die elektrischen Nervenzellpulse stellt die Synapse eine unüberwindbare Barriere dar. Daher kommt es dort zu einer wundersamen Signal-Umwandlung: Die Synapse schüttet Botenstoffe aus, so genannte Neurotransmitter, die zum Dendriten diffundieren. Dort docken sie an bestimmte Rezeptoren an und erzeugen so wieder elektrische Impulse. "Bisher nahm man an, dass nur an Synapsen Neurotransmitter ausgeschüttet werden", betont der Bonner Privatdozent Dr. Dirk Dietrich. "Das scheint nach unseren Erkenntnissen aber nicht zu stimmen."

Botenstoff lockt Isolierzellen an

Zusammen mit seinen Kolleginnen Dr. Maria Kukley und Dr. Estibaliz Capetillo-Zarate hat Dietrich die "weiße Substanz" im Gehirn von Ratten genauer untersucht. Hier liegen die "Kabelschächte", die rechte und linke Hirnhälfte miteinander verbinden. Sie bestehen im wesentlichen aus Axonen und Hilfszellen. Dendriten oder gar Synapsen gibt es dort keine. "Man würde dort also auch keine Botenstoff-Freisetzung erwarten", betont der Hirnforscher.

Dennoch machten die Wissenschaftler in der weißen Substanz eine merkwürdige Entdeckung: Sobald ein elektrischer Impuls durch ein Axon-Kabel läuft, wandern kleine Bläschen mit Glutamat zur Axon-Membran und entlassen ihren Inhalt ins Gehirn. Glutamat ist einer der wichtigsten Neurotransmitter und wird auch bei der Signalweiterleitung an Synapsen ausgeschüttet. Die Forscher konnten sogar nachweisen, dass bestimmte Zellen in der weißen Substanz auf das Glutamat reagierten: Die Vorläufer der so genannten Oligodendrozyten. Oligodendrozyten sind die "Isolierzellen" des Gehirns: Sie produzieren das Myelin, eine Art Fettschicht, die die Axone umhüllt und für eine schnellere Signalweiterleitung sorgt. "Wahrscheinlich orientieren sich noch unreife Isolierzellen mit Hilfe des Glutamats, um Axone zu finden und sie mit einer Myelinschicht zu umhüllen", vermutet Dirk Dietrich.

Sobald die Axone den weißen "Kabelschacht" verlassen, treten sie in die graue Gehirnsubstanz ein und treffen dort auf ihre Empfänger-Dendriten. Dort erfolgt an den Synapsen die Weitergabe der Information an die Empfängerzelle. "Wir halten es jedoch für wahrscheinlich, dass die Axone auch außerhalb von Synapsen auf ihrem Weg durch die graue Substanz Glutamat freisetzen", spekuliert Dietrich. "Hier liegen Nervenzellen und Dendriten dicht an dicht. Das Axon könnte so also nicht nur den eigentlichen Empfänger, sondern auch noch zahlreiche weitere Nervenzellen erregen."

Sollte diese These stimmen, muss die seit über hundert Jahren gültige Lehrmeinung zur Kommunikation von Neuronen revidiert werden. 1897 prägte Sir Charles Sherrington die Idee, dass nur an den Synapsen Botenstoffe freigesetzt werden. Laut dem Begründer der modernen Neurophysiologie können Nervenzellen daher nur mit wenigen Nervenzellen kommunizieren: nämlich nur mit denjenigen, mit denen sie über Synapsen verbunden sind. Auf diesem Konzept beruht die Vorstellung, dass sich neuronale Information im Gehirn ähnlich wie Strom in einem Computer gerichtet und nur entlang bestimmter geordneter Schaltkreisen ausbreitet.

Zuviel Glutamat ist der Zellen Tod

Die Entdeckung des Forscherteams hat aber noch einen medizinisch interessanten Aspekt: Es ist schon lange bekannt, dass bei Sauerstoffmangel oder heftigen epileptischen Anfällen zahlreiche Isolierzellen in der weißen Substanz zugrunde gehen. Auslöser der Schäden ist ein alter Bekannter: Der Neurotransmitter Glutamat. "Niemand wusste bislang jedoch, wo das Glutamat herkommt", sagt Dr. Dietrich. "Unsere Ergebnisse eröffnen vielleicht völlig neue Therapieoptionen." Denn schon heute gibt es Medikamente, die verhindern, dass Glutamatbläschen ihre Fracht ins Gehirn abgeben. Auch wissen die Bonner Neurowissenschaftler inzwischen genau, welche Rezeptoren der Isolierzellen der Neurotransmitter stimuliert - ebenfalls ein Ansatzpunkt für neue Arzneien.

Doch warum ist Glutamat mitunter so gefährlich? Bei einem Epilepsie-Anfall "feuern" die Nervenzellen sehr schnell und heftig. Dann laufen so viele Impulse durch die Axone, dass auf einen Schlag große Mengen Glutamat frei werden. "In diesen Konzentrationen schädigt der Botenstoff die Isolierzellen", sagt Dietrich. "Die Dosis macht das Gift."

Kontakt:
PD Dr. Dirk Dietrich
Klinik für Neurochirurgie
Telefon: 0228/287-19224 oder -16590
E-Mail: dirk.dietrich@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Axon Botenstoff Dendrit Glutamat Isolierzellen Nervenzelle Neuron Neurotransmitter Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie