Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorhersagen für die Proteinfabrik

23.02.2007
Die Gensuchmaschine mSplicer kann proteincodierende Bereiche auf den Genen des Fadenwurms C. elegans um 40 % exakter bestimmen als bisherige Verfahren

Noch ist es eine Vision: Aus den rund drei Milliarden Buchstaben des menschlichen Genoms auf Knopfdruck exakt diejenigen Abschnitte herauszufiltern, die für den Bau von Proteinen zuständig sind. Was für das menschliche Genom noch in der Zukunft liegt, ist Wissenschaftlern der Fraunhofer- und der Max-Planck-Gesellschaft für das Genom des Fadenwurms Caenorhabditis elegans nun gelungen: Sie können mit hoher Genauigkeit Exons und Introns, d. h. proteincodierende und nicht codierende Abschnitte erkennen. Die Ergebnisse des Kooperationsprojekts werden am 23. Februar 2007 in der Zeitschrift PLoS Computational Biology publiziert: http://dx.doi.org/10.1371/journal.pcbi.0030020.eor

Der einen Millimeter lange Caenorhabditis elegans gehört zu den bestuntersuchten Organismen der Welt. Sein Genom ist seit 1998 vollständig sequenziert. Dennoch ist die Annotation des Genoms, d. h. die Lokalisierung seiner Gene und die Bestimmung der entsprechenden Proteine, bei weitem noch nicht vollständig. Sie wird fortlaufend überarbeitet und vervollständigt (http://www.wormbase.org). Ziel des Forschungsprojekts ist es, die bestehende, aber noch nicht komplett durch Experimente belegte Annotation des Fadenwurms zu verbessern. Dazu wählten die Forscher moderne Verfahren des maschinellen Lernens. Mit ihrer Hilfe sollten Exons und Introns in der genetischen Information des Fadenwurms identifiziert werden. Die Ergebnisse der Forschungsarbeiten zeigen, dass Verfahren des maschinellen Lernens um 40% exaktere Ergebnisse liefern als herkömmliche Methoden und insbesondere als die zur Zeit der Experimente gültige Annotation (Wormbase WS120). Verfahren des maschinellen Lernens können somit wesentlich zu einer Verbesserung bestehender Annotationen nicht nur bei C. elegans, sondern auch bei anderen Organismen beitragen und die korrekte Entschlüsselung genetischer Informationen erheblich beschleunigen.

Methode und Verfahren

Um ihre Ergebnisse zu belegen, gingen die Wissenschaftler in mehreren Schritten vor: Zunächst wurden die eingesetzten Algorithmen anhand bereits entschlüsselter mRNA-Sequenzen trainiert. mRNA-Moleküle (mRNA = Messenger-Ribonukleinsäure) transportieren die genetische Information der DNA und codieren die ihr entsprechenden Proteine. Während des Trainings lernen die Algorithmen die Muster für die Übersetzung von DNA in mRNA. Diese Muster helfen, die verschiedenen Teile der Gensequenz voneinander zu unterscheiden. Dabei spielt die Erkennung der Grenzen zwischen Exons und Introns, den sogenannten Spleißstellen, eine entscheidende Rolle.

Nach einer Trainingsphase wurden die Algorithmen zur Vorhersage von fertiger mRNA aus DNA eingesetzt und die Er-gebnisse mit bestehenden Datenbanken verglichen. Mit einer Genauigkeit von bis zu 95% konnte mSplicer alle Exons und Introns korrekt vorhersagen.

Auffällig war, dass die Ergebnisse nur in bis zu 50% mit der bestehenden Annotation des Genoms von C. elegans übereinstimmten. Eine Evaluation der Wormbase Annotation Version WS 120 mithilfe von später verfügbaren Informationen (basierend auf Wormbase Version WS 150) bestätigte, dass WS 120 in 18% der untersuchten Fälle ungenau war, während von mSplicer nur 10-13% der Fälle nicht exakt übersetzt wurden. Darüber hinaus belegen biologische Laborex-perimente mit 20 Genen, bei denen WS 120 und mSplicer in hohem Maße voneinander abwichen, die Überlegenheit des algorithmischen Verfahrens. Es lieferte in 75% aller Fälle richtige Vorhersagen, während die bestehende Annotation in keinem der untersuchten Fälle korrekt war.

Auf Grundlage der Ergebnisse wurde eine neue Annotation von C. elegans entwickelt. Sie ist im WWW

unter http://www.msplicer.org zum Download verfügbar.

In einem weiteren Schritt wurde mSplicer mit zwei weiteren State-of-the-art Verfahren zur Vorhersage von Exons und Introns verglichen: SNAP und ExonHunter. Diese Verfahren basieren auf sogenannten generativen Modellen, die versuchen, die Struktur der untersuchten Daten zu modellieren. mSplicer hingegen beruht auf diskriminativen Methoden: Der Algorithmus lernt "den Unterschied" zwischen richtigen und falschen Vorhersagen und unterscheidet sie anhand einer Trennfunktion. Je nach Auswahl der zugrundeliegenden Sequenzen erreichten SNAP und ExonHunter eine Genauigkeit bei der Vorhersage von Exons und Introns von nur 82,6 bzw. 90,2%. Die neu entwickelte Methode mSplicer kann eine Genauigkeit von 95.2% erzielen.

mSplicer wird seit 2003 im Rahmen eines Kooperationsprojekts zwischen der Fraunhofer- und der Max-Planck-Gesellschaft entwickelt. Der Schwerpunkt liegt auf einer engeren Verzahnung von Grundlagen- und angewandter Forschung.

Weitere Informationen erteilen Ihnen gern die zuständigen Projektleiter von Fraunhofer FIRST, Prof. Dr. Klaus-Robert Müller, vom Max-Planck-Institut für Biologische Kybernetik, Prof. Dr. Bernhard Schölkopf, und vom Friedrich-Miescher-Laboratorium, Dr. Gunnar Rätsch.

Pressekontakt:
Mirjam Kaplow, Leiterin Institutskommunikation Fraunhofer FIRST;
Tel.: 030/6392-1808; -1823
E-Mail: mirjam.kaplow@first.fraunhofer.de
Gunnar Rätsch, Leiter der Arbeitsgruppe "Machinelles Lernen in der Biologie"; Tel.: 07071/601 -820; -801

E-mail: Gunnar.Raetsch@tuebingen.mpg.de

Mirjam Kaplow | idw
Weitere Informationen:
http://www.msplicer.org
http://www.wormbase.org
http://www.first.fhg.de

Weitere Berichte zu: Algorithmus Annotation Exon Fadenwurm Genom Introns Vorhersage

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zentraler Schalter
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Lungenentzündung mit Impfstoffen statt Antibiotika behandeln
21.11.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Gene für das Risiko von allergischen Erkrankungen entdeckt

21.11.2017 | Studien Analysen

Wafer zu Chip: Röntgenblick für weniger Ausschuss

21.11.2017 | Informationstechnologie

Nanopartikel helfen bei Malariadiagnose – neuer Schnelltest in der Entwicklung

21.11.2017 | Biowissenschaften Chemie