Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorhersagen für die Proteinfabrik

23.02.2007
Die Gensuchmaschine mSplicer kann proteincodierende Bereiche auf den Genen des Fadenwurms C. elegans um 40 % exakter bestimmen als bisherige Verfahren

Noch ist es eine Vision: Aus den rund drei Milliarden Buchstaben des menschlichen Genoms auf Knopfdruck exakt diejenigen Abschnitte herauszufiltern, die für den Bau von Proteinen zuständig sind. Was für das menschliche Genom noch in der Zukunft liegt, ist Wissenschaftlern der Fraunhofer- und der Max-Planck-Gesellschaft für das Genom des Fadenwurms Caenorhabditis elegans nun gelungen: Sie können mit hoher Genauigkeit Exons und Introns, d. h. proteincodierende und nicht codierende Abschnitte erkennen. Die Ergebnisse des Kooperationsprojekts werden am 23. Februar 2007 in der Zeitschrift PLoS Computational Biology publiziert: http://dx.doi.org/10.1371/journal.pcbi.0030020.eor

Der einen Millimeter lange Caenorhabditis elegans gehört zu den bestuntersuchten Organismen der Welt. Sein Genom ist seit 1998 vollständig sequenziert. Dennoch ist die Annotation des Genoms, d. h. die Lokalisierung seiner Gene und die Bestimmung der entsprechenden Proteine, bei weitem noch nicht vollständig. Sie wird fortlaufend überarbeitet und vervollständigt (http://www.wormbase.org). Ziel des Forschungsprojekts ist es, die bestehende, aber noch nicht komplett durch Experimente belegte Annotation des Fadenwurms zu verbessern. Dazu wählten die Forscher moderne Verfahren des maschinellen Lernens. Mit ihrer Hilfe sollten Exons und Introns in der genetischen Information des Fadenwurms identifiziert werden. Die Ergebnisse der Forschungsarbeiten zeigen, dass Verfahren des maschinellen Lernens um 40% exaktere Ergebnisse liefern als herkömmliche Methoden und insbesondere als die zur Zeit der Experimente gültige Annotation (Wormbase WS120). Verfahren des maschinellen Lernens können somit wesentlich zu einer Verbesserung bestehender Annotationen nicht nur bei C. elegans, sondern auch bei anderen Organismen beitragen und die korrekte Entschlüsselung genetischer Informationen erheblich beschleunigen.

Methode und Verfahren

Um ihre Ergebnisse zu belegen, gingen die Wissenschaftler in mehreren Schritten vor: Zunächst wurden die eingesetzten Algorithmen anhand bereits entschlüsselter mRNA-Sequenzen trainiert. mRNA-Moleküle (mRNA = Messenger-Ribonukleinsäure) transportieren die genetische Information der DNA und codieren die ihr entsprechenden Proteine. Während des Trainings lernen die Algorithmen die Muster für die Übersetzung von DNA in mRNA. Diese Muster helfen, die verschiedenen Teile der Gensequenz voneinander zu unterscheiden. Dabei spielt die Erkennung der Grenzen zwischen Exons und Introns, den sogenannten Spleißstellen, eine entscheidende Rolle.

Nach einer Trainingsphase wurden die Algorithmen zur Vorhersage von fertiger mRNA aus DNA eingesetzt und die Er-gebnisse mit bestehenden Datenbanken verglichen. Mit einer Genauigkeit von bis zu 95% konnte mSplicer alle Exons und Introns korrekt vorhersagen.

Auffällig war, dass die Ergebnisse nur in bis zu 50% mit der bestehenden Annotation des Genoms von C. elegans übereinstimmten. Eine Evaluation der Wormbase Annotation Version WS 120 mithilfe von später verfügbaren Informationen (basierend auf Wormbase Version WS 150) bestätigte, dass WS 120 in 18% der untersuchten Fälle ungenau war, während von mSplicer nur 10-13% der Fälle nicht exakt übersetzt wurden. Darüber hinaus belegen biologische Laborex-perimente mit 20 Genen, bei denen WS 120 und mSplicer in hohem Maße voneinander abwichen, die Überlegenheit des algorithmischen Verfahrens. Es lieferte in 75% aller Fälle richtige Vorhersagen, während die bestehende Annotation in keinem der untersuchten Fälle korrekt war.

Auf Grundlage der Ergebnisse wurde eine neue Annotation von C. elegans entwickelt. Sie ist im WWW

unter http://www.msplicer.org zum Download verfügbar.

In einem weiteren Schritt wurde mSplicer mit zwei weiteren State-of-the-art Verfahren zur Vorhersage von Exons und Introns verglichen: SNAP und ExonHunter. Diese Verfahren basieren auf sogenannten generativen Modellen, die versuchen, die Struktur der untersuchten Daten zu modellieren. mSplicer hingegen beruht auf diskriminativen Methoden: Der Algorithmus lernt "den Unterschied" zwischen richtigen und falschen Vorhersagen und unterscheidet sie anhand einer Trennfunktion. Je nach Auswahl der zugrundeliegenden Sequenzen erreichten SNAP und ExonHunter eine Genauigkeit bei der Vorhersage von Exons und Introns von nur 82,6 bzw. 90,2%. Die neu entwickelte Methode mSplicer kann eine Genauigkeit von 95.2% erzielen.

mSplicer wird seit 2003 im Rahmen eines Kooperationsprojekts zwischen der Fraunhofer- und der Max-Planck-Gesellschaft entwickelt. Der Schwerpunkt liegt auf einer engeren Verzahnung von Grundlagen- und angewandter Forschung.

Weitere Informationen erteilen Ihnen gern die zuständigen Projektleiter von Fraunhofer FIRST, Prof. Dr. Klaus-Robert Müller, vom Max-Planck-Institut für Biologische Kybernetik, Prof. Dr. Bernhard Schölkopf, und vom Friedrich-Miescher-Laboratorium, Dr. Gunnar Rätsch.

Pressekontakt:
Mirjam Kaplow, Leiterin Institutskommunikation Fraunhofer FIRST;
Tel.: 030/6392-1808; -1823
E-Mail: mirjam.kaplow@first.fraunhofer.de
Gunnar Rätsch, Leiter der Arbeitsgruppe "Machinelles Lernen in der Biologie"; Tel.: 07071/601 -820; -801

E-mail: Gunnar.Raetsch@tuebingen.mpg.de

Mirjam Kaplow | idw
Weitere Informationen:
http://www.msplicer.org
http://www.wormbase.org
http://www.first.fhg.de

Weitere Berichte zu: Algorithmus Annotation Exon Fadenwurm Genom Introns Vorhersage

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie