Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kein Drehmoment für die DNA - Neue Theorie zur Verpackung viralen Erbguts

20.02.2007
Auch Bakterien können sich Viren holen: Bakteriophagen, kurz Phagen, heißen sie, sind in der Regel auf nur eine Bakterienart spezialisiert und für diese tödlich - was Phagen potentiell interessant macht für die antibakterielle Therapie. Als Viren sind sie darauf angewiesen, ihr Erbmaterial in die Wirtszelle zu schleusen.

Anhand dieser Kopiervorlage werden identische Moleküle produziert und dann - für eine neue Phagengeneration - in ebenfalls neue Viruspartikel verpackt. Bei einigen der größeren Phagen wird das Erbmaterial mit Hilfe eines Connectors verpackt. Dieses röhrenförmige Gebilde am Kopfteil des Phagen rotiere, um die DNA in das Viruspartikel zu schleusen, so die lang gehegte Vermutung. Ein internationales Team, dem auch Thorsten Hugel und Professor Jens Michaelis vom "Center for NanoScience (CeNS)" der Ludwig-Maximilians-Universität (LMU) München angehören, konnte nun diese seit 30 Jahren vorherrschende Hypothese widerlegen.

Wie in der online-Ausgabe des Fachmagazins "Public Library of Science (PloS) Biology" berichtet, kann eine rotierende Bewegung des Connectors ausgeschlossen werden. Das wiederum könnte einer neuen Theorie Vorschub leisten, die Michaelis mit entwickelt hat. Demnach wird das virale Erbmaterial nach und nach durch den Connector geschoben, der sich dafür abwechselnd zusammenzieht und wieder ausstreckt. Energie ist vermutlich genug vorhanden: Denn der in der Studie untersuchte Phage verfügt über einen der kraftvollsten der bisher bekannten molekularen Motoren.

Dieses unter anderem auf das weit verbreitete Bakterium Bacillus subtilis spezialisierte Virus gehört zu den Phagen, deren Erbmaterial aus doppelsträngiger DNA - ähnlich dem Molekül in unseren Zellen - besteht. Die DNA befindet sich im Kopfteil des Phagen, dem so genannten Capsid. Von dort wird es über einen Injektionsapparat ausgeschleust, sobald der Phage an ein passendes Bakterium angedockt hat. Im Bakterium werden die Kopien des DNA-Moleküls sowie entsprechend dessen genetischer Information neue Capside hergestellt. Dann aber müssen die Capsid-Kapseln mit je einem DNA-Molekül beladen werden.

Dafür ist vor allem wegen des begrenzten Raumes im Capsid einiges an mechanischer Kraft nötig. Neben verschiedenen Motor- und anderen Molekülen ist der röhrenförmige Connector für die Verpackung der DNA essentiell, wenn auch unklar ist, welche Rolle er genau spielt. Zahlreiche Studien gingen dieser Frage nach, konnten aber die vielen Details nicht zu einem vollständigen mechanistischen Modell zusammenfügen. Deshalb existieren zahlreiche Hypothesen zur Funktionsweise des Connectors, die ihm meist eine rotierende Bewegung zuschreiben. In der vorliegenden Untersuchung wurde die Rotationshypothese nun zum ersten Mal direkt getestet.

Dazu setzten die Wissenschaftler auf eine Kombination fortschrittlicher Methoden. Es gelang ihnen, ein einzelnes Farbstoffmolekül an den Connector zu hängen, um dessen Orientierung - sowie deren mögliche Änderung - zu beobachten. Gleichzeitig verfolgten sie die Bewegung eines magnetischen Partikels, das mit DNA verbunden war, die verpackt wurde. Insgesamt ergab das eine außergewöhnliche technische Herausforderung. Trotzdem waren die Forscher erfolgreich und gelangten zu einem eindeutigen Ergebnis: Sie können eine Rotation des Connectors mit mehr als 99 Prozent Wahrscheinlichkeit ausschließen und damit gleich mehrere der zahlreichen Hypothesen zur Verpackung der Phagen-DNA widerlegen. Damit bleibt jetzt aber die Frage zu klären, wie das Erbmolekül in das Capsid gelangt, und welche Rolle der Connector dabei spielt. Schließlich ist ein derartiger Vorgang nur denkbar, wenn eine starke treibende Kraft ihn ermöglicht. Es gibt ein vor kurzem erst entwickeltes Modell, das alle derzeit bekannten experimentellen Daten vereint und die nötigen Voraussetzungen erfüllt. Ein internationales Forscherteam, dem auch Michaelis angehörte, berichtete davon in dem Fachmagazin "Cell". Demnach wird die Phagen-DNA unter Energieverbrauch durch den Connector geschleust.

Es war bereits bekannt, dass das Erbmaterial im viralen Kopfteil außerordentlich dicht verpackt werden muss, so dass sich ab einer bestimmten Füllmenge ein starker Druck aufbaut. Dieser ist möglicherweise nötig, um die DNA bei der Infektion eines Bakteriums in dessen Zellinneres injizieren zu können. Zunächst aber ist Energie nötig, um die DNA gegen diesen Widerstand verpacken zu können. Wie die Autoren des neuen Modells herausstellen, ist dies auch nur mit Hilfe eines kraftvollen molekularen Motors möglich, zu dem unter anderem der Connector gehört. Weitere Bestandteile sind ringförmig angeordnete Enzyme, die gebundene Energie freisetzen können. Tatsächlich gehört der molekulare Motor des in der Studie untersuchten Phagen zu den stärksten bekannten molekularen Motoren. Fraglich war aber, wie die frei gesetzte chemische Energie in mechanische Arbeit umgesetzt werden kann. Die Forscher konnten zeigen, dass der DNA-Transport vermutlich zyklisch in mehreren Schritten abläuft, so dass nicht alle Energie frei setzenden Enzyme gleichzeitig aktiv sind. "Wir können uns vorstellen, dass der Connector als eine Art Ventil funktioniert, das verhindert, dass die DNA wieder herausrutscht", so Michaelis. "Dafür spricht auch die Struktur des Connectors, der nämlich einer Springfeder ähnelt. Weitere experimentelle Daten sind aber nötig, um die Funktion dieser Struktur und den gesamten Vorgang der Verpackung zu klären. Das ist auch wichtig, weil die an der Verpackung beteiligten Enzyme anderen Enzymen ähneln, die für die Zellteilung und andere zelluläre Vorgänge essentiell sind."

Publikation:
"Experimental Test of Connector Rotation during DNA Packaging into Baceriophage Phage Phi29 Capsids", Thorsten Hugel, Jens Michaelis, Craig L. Hetherington, Paul J. Jardine, Shelley Grimes, Jessica M. Walter, Wayne Falk, Dwight L. Anderson, Carlos Bustamante, PloS Biology online, 20. März 2007

"Mechanism of Force Generation of a Viral Packaging Motor", Yann R. Chemla, K. Aathavan, Jens Michaelis, Shelley Grimes, Paul J. Jardine, Dwight L. Anderson, and Carlos Bustamante, Cell, 9. September 2005

Ansprechpartner:
Professor Dr. Jens Michaelis
Center for NanoScience (CeNS) der LMU
Tel.: 089-2180-77561
Fax: 089-2180-9977561
E-Mail: jens.michaelis@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.cup.uni-muenchen.de/pc/michaelis

Weitere Berichte zu: Bakterium Capsid DNA Enzym Erbmaterial Phagen Verpackung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie