Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Himmelskarte im Heuschreckengehirn

16.02.2007
Science-Publikation des Marburger Neurobiologen Professor Dr. Uwe Homberg - Für Menschen unsichtbare Polarisation von Sonnenlicht wird von Wüstenheuschrecken in spezialisierten Gehirnregionen verarbeitet

Noch immer gibt das Orientierungsvermögen der Heuschrecken Rätsel auf. Während man früher glaubte, sie ließen sich auf ihren Tausende Kilometer langen Wanderungen vor allem vom Wind treiben, gilt inzwischen als wahrscheinlich, dass sie sich an der Sonne und an polarisiertem Himmelslicht orientieren.

Darüber hinaus wies der Marburger Neurobiologe Professor Dr. Uwe Homberg nun nach, welcher Mechanismus im Gehirn der Wüstenheuschrecke Schistocerca gregaria der Verarbeitung polarisierten Lichts zu Grunde liegt. In Windkanalversuchen konnten Homberg und Mitarbeiter zudem erstmals belegen, dass die Erkennung und neuronale Verrechnung der Polarisationsdaten das Verhalten der Tiere tatsächlich beeinflusst.

Über seine Ergebnisse berichtet Homberg jetzt gemeinsam mit seinem Doktoranden Stanley Heinze im internationalen Fachjournal Science. Die Veröffentlichung unter dem Titel "Maplike Representation of Celestial E-vector Orientations in the Brain of an Insect" erscheint am 16. Februar 2007.

"Das polarisierte Licht, dessen Eigenschaften den Heuschrecken zur Orientierung dienen, wird im so genannten Zentralkomplex des Heuschreckengehirns verarbeitet", erklärt Homberg seine Entdeckung. In dieser auffallend geordneten Struktur gebe es zahlreiche Neurone, die auf die Schwingungsrichtung von Lichtwellen reagieren. Homberg untersuchte insbesondere die Protocerebralbrücke: Wie bei allen Insekten finden sich hier Neuronen in einer Reihe von sechzehn säulenartigen Kompartimenten, so genannten Kolumnen. "Bislang allerdings war deren Funktion unklar", sagt Homberg. "Wir haben nun nachgewiesen, dass jede Säule auf unterschiedliche Polarisationsrichtungen reagiert." Jede Säule deckt einen Winkelbereich von etwa 26 Grad ab, insgesamt werde dabei eine vollständige 360-Grad-Erfassung erreicht. "Die Aktivität einer bestimmten Säule", schließt Homberg, "gibt dem Tier also an, wie es relativ zur Sonne orientiert ist."

Außergewöhnliches sensorisches Instrumentarium

Mit der Erkennung von Polarisationsmustern verfügen Heuschrecken, aber auch andere Insekten wie Bienen oder Ameisen, über ein außergewöhnliches sensorisches Instrumentarium. Mittels der "dorsalen Randregion" des Auges - einem mit speziellen Photorezeptoren ausgestatteten und himmelwärts gerichteten Teil des Auges - können sie am blauen Himmel "ablesen", in welcher Richtung sich die Sonne befindet, selbst wenn sie hinter Wolken verborgen ist. Was sie sehen, lässt sich so erklären: Licht besteht aus elektromagnetischen Wellen, die senkrecht zu ihrer Ausbreitungsrichtung schwingen. Noch immer aber sind dabei zahllose verschiedene Schwingungsrichtungen möglich: Stellt man sich vor, dass ein Lichtstrahl auf das Auge trifft, können die Wellen von oben nach unten schwingen, von links nach rechts oder in beliebigen anderen Orientierungen (aber immer senkrecht zur Richtung des Strahls). Wird Sonnenlicht indessen in der Erdatmosphäre gestreut, sodass es als blaues Licht des Himmels zu uns kommt, bleibt an jedem Punkt des Himmels nur eine "Vorzugsrichtung" der Schwingung übrig. Diese Richtung (genauer: die elektrischen Feldvektoren) können von spezialisierten Fotorezeptoren im Auge und von Neuronen im Gehirn der Insekten detektiert werden.

Die eigentliche Orientierung der Heuschrecke erfolgt dann anhand des Sonnenstands. "Selbst wenn sie in hohem Gras verborgen ist und die Sonne gar nicht sieht, kann die Heuschrecke nun deren Position herausfinden, ein kleiner Himmelsausschnitt genügt ihr dafür", erklärt Homberg. "Denn sobald sie die Schwingungsebene des Lichts erkennt, weiß sie auch, dass die Sonne senkrecht zu dieser Richtung zu suchen ist."

Leistungsfähges Insektenhirn

"Sehr beeindruckend" sei es, was die Heuschrecken damit leisten, so Homberg. "Dass ein Insektenhirn tatsächlich über eine kartenartige Repräsentation elektrischer Feldvektoren am Himmel und über die entsprechenden Verrechnungsmechanismen verfügt, war bislang nicht bekannt." Tatsächlich könne man nun davon ausgehen, dass die Insekten eine "Himmelskarte" errechnen, bei der den Polarisationsrichtungen am Himmel jeweils eine genau bestimmbare neuronale Struktur im Gehirn, nämlich eine Kolumne im Zentralkomplex, entspricht.

"Noch unklar ist allerdings", sagt der Neurobiologie, "wie die Kompensation der Tageszeit erfolgt." Denn der Sonnenstand verändert sich im Lauf des Tages, sodass allein die Position der Sonne noch keine verlässliche Information über eine bestimmte Himmelsrichtung liefert. "Darum führen wir nun weitere Versuche durch und untersuchen auch jene Neuronen, die sich von der Protocerebralbrücke bis zum Bauchmark der Insekten - dem Pendant zum menschlichen Rückenmark - erstrecken." Das Bauchmark nämlich steuert die Flügelmuskulatur der Tiere an, spätestens hier also muss die vollständige Richtungsinformation einschließlich der Tageszeitkompensation vorliegen.

Unterschiedliche Sonnenstände im Windkanal simuliert

Neben der Entdeckung, in welcher Weise Heuschreckengehirne polarisiertes Licht verarbeiten, konnte Homberg erstmals auch die entsprechende "Verhaltensrelevanz" nachweisen, also belegen, dass die Ergebnisse dieser Verarbeitung von den Heuschrecken tatsächlich genutzt werden. "Dazu haben wir die Tiere in einem Windkanal fixiert, sodass sie zwar ihre Flügel bewegen konnten, dabei aber immer an derselben Stelle blieben", erklärt Homberg. "Mittels einer Polarisationsfolie, die wir über der Apparatur ausbreiteten, setzten wir die Tiere unterschiedlich polarisiertem Licht aus - wir simulierten also unterschiedliche Sonnenstände." Tatsächlich erwies sich, dass die Heuschrecken darauf reagierten: "Ein Drehmomentmesser an der Aufhängung der Tiere zeigte, dass sie ihre Flugrichtung abhängig von der Polarisation des einfallenden Lichts zu verändern suchten."

Hombergs Versuche finden bislang weitgehend im Labor statt, denn entsprechende Versuche in der freien Wildbahn sind mit erheblichen Schwierigkeiten verbunden. "Einige der Probleme haben wir allerdings bereits gelöst", sagt der Neurobiologe, der in ersten Freilandexperimenten derzeit am Nachweis arbeitet, dass ein Ausschnitt des blauen Himmels tatsächlich genügt, um den Tieren den Weg zu weisen.

Kontakt
Professor Dr. Uwe Homberg: Philipps-Universität Marburg, Fachbereich Biologie, Fachgebiet Neurobiologie/Ethologie, Karl-von-Frisch-Str. 8, 35032 Marburg

Tel.: (06421) 28 23402, E-Mail: homberg@staff.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Heuschrecken Heuschreckengehirn Insekt Neurobiologie Neuron

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics