Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Wolken auf der Spur

14.02.2007
Helmholtz Gemeinschaft Deutscher Forschungszentren fördert Vernetzung mit den Hochschulen - Arbeitsgruppe um Hochschuldozent Dr. Volker Ebert von der Heidelberger Ruprecht-Karls-Universität am Projekt "Aerosol Cloud Interactions" beteiligt - Heidelberger Wolken-Wasserdampf-Spektrometer weltweit wohl einmalig

Die Klimaentwicklung der kommenden Jahrhunderte ist derzeit in allen Medien ein großes Thema, doch die aus den Modellen gemachten Annahmen über das zukünftige Klima können nur so gut sein wie die Datenbasis. Und diese ist in einigen Punkten durchaus noch verbesserungsfähig. So ist "die genaue Beschreibung der Wolken in allen Klimamodellen ein Schwachpunkt", erläutert Hochschuldozent Dr. Volker Ebert vom Institut für Physikalische Chemie der Heidelberger Ruprecht-Karls-Universität.

Längst ist es aber einem Institut oder einer Forschungseinheit nicht mehr möglich, derartig komplexe Probleme wie die Wolkenbildung alleine zu lösen. Das hat auch die Helmholtz Gemeinschaft Deutscher Forschungszentren erkannt und ihre Vernetzung mit den Hochschulen seit einigen Jahren durch ein gesondertes Programm voran getrieben, bei dem in so genannten "Virtuellen Instituten" verschiedene Partner ihre Kompetenzen bündeln. So wie in dem in der aktuellen Ausschreibungsrunde bedachten Projekt "Aerosol Cloud Interactions", das am Forschungszentrum Karlsruhe unter der Leitung von Professor Wolfgang Leisner angesiedelt ist und an dem sich Forscher beispielsweise von den Hochschulen aus Zürich, Mainz, Frankfurt und eben Heidelberg beteiligen. Die Arbeitsgruppe um Volker Ebert trägt dabei entscheidend zur Messtechnik bei, denn das am Institut für Physikalische Chemie entwickelte spezielle Wolken-Wasserdampfspektrometer dürfte weltweit wohl einmalig sein.

Um die Bildung von Wolken zu untersuchen, gibt es verschiedene Möglichkeiten: Einerseits kann man Messungen direkt vor Ort in der Atmosphäre realisieren. Das bringt allerdings den Nachteil mit sich, dass den Wolken praktisch nachgeflogen werden muss. Etwas praktikabler ist es da schon, die Wolkenbildung im Labor nachzustellen. Hierfür wurde am Forschungszentrum Karlsruhe die Klimakammer AIDA konzipiert. Die an die gleichnamige Oper von Puccini erinnernde Abkürzung, die für Aerosol Interaction and Dynamics in the Atmosphere steht, beschreibt eine etwa 83 Kubikmeter große, riesige "Thermoskanne", die auf bis zu minus 100 Grad Celsius gekühlt werden kann.

... mehr zu:
»Aerosol »Wasserdampf »Wolke »Wolkenbildung

Zur Herstellung von Wolken füllt man diese mit angefeuchteter Luft, bis sich die Innenwände mit Wasser oder Eis überziehen. Anschließend vermindert man den Druck in der Kammer rapide, was überraschenderweise auch die "Tragfähigkeit" der Luft für Wasserdampf drastisch verringert. Als Folge davon bilden sich aus dem jetzt überschüssigen Wasserdampf - ganz wie in der freien Natur - je nach Temperatur Wassertröpfchen oder Eiskristalle und somit Wolken. Zusätzlich stehen Aerosole, das sind kleinste luftgetragene Staubpartikel im Bereich von unter ein tausendstel Millimeter Durchmesser, im Verdacht, die Wolkenbildung ganz entscheidend zu beeinflussen. Auch das soll im Rahmen des Virtuellen Institutes sowohl für natürliche Aerosole wie beispielsweise Saharastaub als auch für vom Menschen verursachte Aerosole, wie Rußpartikel aus Dieselmotoren, intensiv untersucht werden.

Von entscheidender Bedeutung ist dabei die Frage nach dem für die Wolkenbildung erforderlichen Mindestüberschuss an Wasserdampf und dessen Lebensdauer. Die Arbeiten der Heidelberger Wissenschaftler um Volker Ebert zielen darauf, den Wasserdampf selektiv, schnell, hochpräzise und erstmals auch innerhalb der Wolken, das heißt ohne die sonst notwendige Entnahme einer Luftprobe, zu ermöglichen und gleichzeitig die bisher notwendige Kalibration der Messgeräte zu vermeiden. Dies gelingt überraschenderweise mit einem mehrfachen Technologietransfer: So erfasst das in Heidelberg entwickelte Laserspektrometer den Wasserdampf einerseits mit den auch zur Internetdatenübertragung eingesetzten Diodenlasern. Andererseits werden die vielfältigen Störungen, die eine Messung innerhalb der Wolke mit sich bringt, mit Methoden korrigiert, die eigentlich für die spektroskopische Diagnose von Verbrennungskraftwerken entwickelt wurden. Diese Messungen innerhalb des Kraftwerksbrennraums wurden ebenfalls massiv von kleinen Partikeln, hier aber aus Asche und Schlacke, gestört, so dass die Technik auf AIDA übertragen werden konnte.

So funktioniert die Zusammenarbeit mit dem Forschungszentrum Karlsruhe bereits seit drei Jahren. "Jetzt ist aber die gemeinsame Forschung voll finanziert", ist Volker Ebert sichtlich froh über das Zustande kommen des Virtuellen Instituts und gibt gleich einen Ausblick auf die zukünftigen Arbeiten rund um die Messtechnik. Da soll unter anderem zunächst einmal die Präzision und Kalibrationsfreiheit validiert werden, aber auch an die Erhöhung der Nachweisgrenzen ist gedacht, damit in sehr kalten Wolken gemessen werden kann und so neue Erkenntnisse zur Wolkenbildung gewonnen werden können.

Stefan Zeeh

Rückfragen bitte an:
Hochschuldozent Dr. Volker Ebert
Physikalisch-Chemisches Institut
Im Neuenheimer Feld 229
69120 Heidelberg
Tel. 06221 545004
volker.ebert@pci.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de/presse

Weitere Berichte zu: Aerosol Wasserdampf Wolke Wolkenbildung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie