Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die geheimen Absichten des Gehirns sichtbar machen

09.02.2007
Wissenschaftler entschlüsseln versteckte Intentionen im menschlichen Gehirn

Jeden Tag nehmen wir uns Dinge vor - dem Freund ein Buch zurückzugeben oder einen Termin nicht zu vergessen. Wie und wo das Gehirn solche Entscheidungen speichert, untersuchte John-Dylan Haynes, Wissenschaftler am Max-Planck-Institut für Kognitions- und Neurowissenschaften, zusammen mit Kollegen aus London und Tokio. Mit Hilfe der Magnetresonanz-Tomographie und hoch entwickelten Analysemethoden ist es den Wissenschaftlern dabei erstmals gelungen, in einem klar definierten Versuchsablauf die Absichten von Probanden aus ihrer Hirnaktivität zu ermitteln (Current Biology online, 8. Februar 2007).


Hirnregionen aus denen menschliche Absichten "ausgelesen" werden können. Die feinkörnigen Hirnaktivierungsmuster (rechts) sind unterschiedlich, je nachdem ob ein Proband eine Addition oder eine Subtraktion vorbereitet. Aus den Aktivierungsmustern in den grün markierten Regionen können verborgene Absichten ausgelesen werden, bevor sie vom Probanden ausgeführt werden. Aus den rot markierten Regionen können die Absichten ausgelesen werden, wenn der Proband begonnen hat, die Absicht in die Tat umzusetzen. Bild: Bernstein Center for Computational Neuroscience Berlin

Was wir uns insgeheim vornehmen, bleibt anderen Menschen verborgen, bis wir unser Vorhaben in die Tat umsetzen - so glauben wir zumindest. Im Rahmen eines klar definierten Versuchsaufbaus ist es nämlich Wissenschaftlern jetzt gelungen, die Absichten ihrer Versuchspersonen schon im Voraus zu entschlüsseln. Dazu ließen sie die Probanden zwischen zwei möglichen Entscheidungen frei wählen. Die Versuchspersonen sollten sich vornehmen, bei einer Rechenaufgabe zwei Zahlen entweder zu addieren oder zu subtrahieren. Und noch bevor die Probanden die Zahlen zu sehen bekamen und zu rechnen begannen, konnten die Wissenschaftler mit 70-prozentiger Genauigkeit die Absicht der Probanden erkennen - allein anhand ihrer Gehirnaktivität.

Die Probanden trafen ihre Wahl verdeckt und wussten zunächst nicht, welche zwei Zahlen sie addieren oder subtrahieren sollten. Dadurch stellten die Wissenschaftler sicher, dass sie ausschließlich die Intention der Probanden aus der Gehirnaktivität ablesen. Andere neuronale Aktivitäten, wie zum Beispiel die eigentliche Durchführung der Rechenaufgabe oder die Vorbereitung der Handbewegung zum Anzeigen der Lösung, fanden in dem Zeitraum der Messungen, aus denen die Wissenschaftler ihre Vorhersagen trafen, nicht statt. Erst einige Sekunden später erschienen die Zahlen auf dem Bildschirm und die Probanden konnten die gewählte Rechenaufgabe ausführen. "Man hat bisher angenommen, dass frei gewählte Vorhaben im mittleren Teil des präfrontalen Kortex, externe Instruktionen hingegen eher im seitlichen Teil gespeichert werden. Diese Annahme konnten wir mit unseren Experimenten bestätigen", erklärt Haynes.

Die Arbeit von Haynes und seinen Kollegen geht aber weit über die Bestätigung vorhandener Kenntnisse hinaus. Noch nie zuvor ist es Wissenschaftlern gelungen, aus der Aktivität des präfrontalen Kortex abzulesen, welche von zwei möglichen Entscheidungen ein Proband getroffen hatte. Der Trick der Wissenschaftler um Haynes, mit dem sie bisher Unsichtbares sichtbar machen konnten, liegt in der Anwendung einer neuen Methode namens "Multivariante Mustererkennung". Dabei programmiert man einen Computer, charakteristische Aktivierungsmuster im Gehirn zu erkennen, die bei den verschiedenen Absichten auftreten. Anders als bei herkömmlichen Methoden werden hier also die Messungen aus vielen Gehirnbereichen kombiniert, um die Absicht der Probanden zu entschlüsseln. Dass das so gut funktioniert, hängt mit der Funktionsweise des Gehirns zusammen. "Die Experimente zeigen, dass Intentionen nicht in einzelnen Nervenzellen gespeichert werden, sondern in einem räumlich verteilten Muster neuronaler Aktivität", so Haynes. Darüber hinaus zeigen sich regionale Unterschiede in der genauen Funktion des präfrontalen Kortex. Weiter vorne gelegene Bereiche kodieren die Intention bis zur Ausführung der Aufgabe, weiter hinten gelegene Bereiche werden aktiv, sobald die Probanden zu rechnen beginnen. "Handlungen, die in einem Bereich des Gehirns als Absicht gespeichert werden, müssen also in einen anderen Bereich des Gehirns kopiert werden, um ausgeführt zu werden", sagt Haynes.

Diese Ergebnisse lassen auch auf eine Verbesserung klinischer und technischer Anwendungen hoffen. Schon heute gibt es erste Ansätze, mit computergestützten Prothesen oder Brain-Computer-Interfaces schwerstgelähmten Patienten das Leben zu erleichtern. Sie konzentrieren sich aber vornehmlich darauf, Bewegungen zu entschlüsseln, die das Gehirn des Patienten plant, der Patient aber nicht mehr ausführen kann. Allein durch die Kraft ihrer Gedanken können Patienten so künstliche Gliedmaßen oder einen Computercursor auf dem Bildschirm bewegen. Die Forschungsarbeiten der Wissenschaftler um Haynes eröffnen nun die Perspektive, zukünftig auch abstraktere Absichten der Patienten, wie zum Beispiel "den blauen Ordner öffnen" oder "Email beantworten", in solche Anwendungen mit einzubeziehen.

Originalveröffentlichung:

John-Dylan Haynes, Katsuyuki Sakai, Geraint Rees, Sam Gilbert, Chris Frith, Dick Passingham
Reading hidden intentions in the human brain
Current Biology online, 8. Februar 2007

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Kognitions- und Neurowissenschaft Kortex Proband

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie