Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom unabhängigen Leben in Dunkelheit

09.02.2007
Neues DFG-Projekt widmet sich Mikroorganismen, die im Tiefenwasser der Ostsee ohne Licht und Sauerstoff autotroph leben können.

Ob an Land oder im Meer - ein Leben unabhängig von Licht, Sauerstoff und "Nahrung", ist nur den ganz kleinen Organismen möglich. Viele von ihnen kennen wir noch nicht einmal. Das ist auch in der Ostsee so, obwohl unser Hausmeer zu den am besten untersuchten Meeresregionen der Welt gehört und die sauerstofffreien Zonen gerade hier sehr verbreitet sind.

Doch bedingt durch ihre geringe Größe entzogen sich die Mikroorganismen lange Zeit einer eingehenden Untersuchung. Erst mit der Entwicklung molekularbiologischer Methoden lassen sie sich allmählich besser erkennen und verstehen. Die Mikro- und Molekularbiologen der Arbeitsgruppe um Prof. Dr. Klaus Jürgens vom Leibniz-Institut für Ostseeforschung Warnemünde sind diesen Organismen schon seit einigen Jahren auf der Spur. Die Deutsche Forschungsgemeinschaft wird ihre Arbeit nun in den nächsten 2 Jahren mit zusätzlichem Fördergeld unterstützen.

Das Leben in den Tiefenbecken der zentralen Ostsee steckt für Mikrobiologen voller Faszination. Dort wo kein Licht mehr hingelangt, in sauerstofffreiem und sulfidischem Wasser leben Bakterien, die es schaffen, trotz absoluter Dunkelheit erhebliche Mengen an Kohlendioxid zu fixieren und damit zu wachsen. Anstelle der Photosynthese nutzen sie die so genannte Chemosynthese - sie ziehen aus lichtunabhängigen chemischen Reaktionen die Energie zum Aufbau organischer Substanz.

Bereits vor 15 Jahren gab es erste Hinweise, dass sich hinter diesen autotrophen Organismen Bakterien verbergen könnten, die ihre Energie aus der Sulfidoxidation und Nitratreduktion gewinnen. Insbesondere die Nitratreduktion, die so genannte Denitrifizierung, ist eine Leistung die man nicht genug hervorheben kann, denn in der stark überdüngten Ostsee sorgt die Denitrifizierung dafür, dass zumindest ein Teil des "Düngemittels" Nitrat dem Kreislauf wieder entzogen wird.

Inzwischen konnte diese Theorie der Denitrifizierung durch autotrophe Bakterien bestätigt und ein für diesen Prozess verantwortlicher Schlüsselorganismus molekularbiologisch identifiziert werden. Im Jahr 2006 gelang es schließlich dem Warnemünder Mikrobiologen Dr. Matthias Labrenz aus der Arbeitsgruppe Jürgens, zusammen mit seinen Mitarbeitern erstmals dieses Bakterium zu kultivieren. Es bekam von ihnen den spröden Namen "GD1" (Gotland Deep Nr. 1).

Obwohl mit der Identifizierung seiner Schlüsselfunktion bei der Denitrifizierung ein wichtiger Schritt erfolgt ist, gibt der Organismus noch viele Rätsel auf. Daher wird mit Nachdruck daran gearbeitet, seine weiteren Fähigkeiten und Möglichkeiten besser kennen zu lernen. Finanziert durch die renommierte Gordon and Betty Moore Foundation lassen die Warnemünder Mikrobiologen seit letzten Sommer am amerikanischen Craig-Venter-Institute die Genom-Sequenzierung des Gotlandtief-Organismus durchführen. Gemeinsam mit dem Max-Planck-Institut für Marine Mikrobiologie in Bremen arbeiten sie an der Analyse des Genoms, in Kooperation mit der Ernst-Moritz-Arndt-Universität Greifswald soll das Proteom von GD1 untersucht werden.

Besonders überraschend und fast schon "mysteriös" ist es für die Forscher allerdings, dass gerade in Wasserschichten unterhalb des Hauptlebensraumes von GD1, in Bereichen, die nicht nur Sauerstoff- sondern auch Nitratfrei sind, die mikrobiellen Kohlendioxid-Fixierungsraten um ein Vielfaches höher sind. Es ist zurzeit noch fraglich, welche Organismen oder Prozesse dafür verantwortlich sein könnten. Mit dem neuen DFG-Projekt will man "Licht" ins Dunkel bringen. Ist es vielleicht sogar GD1, der, obwohl zahlenmäßig geringer vertreten als in den höheren Wasserschichten, hier - ohne Nitrat - aktiver ist? Oder wird er durch andere, noch unbekannte Bakterien abgelöst? Die Antwort soll durch einen kombinierten Einsatz von Gensonden, 14CO2 und 13CO2-Fixierungsversuchen sowie Genexpressionsanalysen aus den fraglichen Wasserschichten gefunden werden.

Die Warnemünder Forscher sind sich sicher: Die Lösung dieses Rätsels ist der Schlüssel zu einem neuen Verständnis der Lebenszusammenhänge an der Grenzfläche zwischen Sauerstoffhaltigen und Sauerstofffreien Wasserschichten und somit in weiten Bereichen der Ostsee, des Schwarzen Meeres und vielen Schelfregionen.

Kontakt:
Dr. Matthias Labrenz, Tel.: 0381 5197 378
Dr. Barbara Hentzsch, Tel.: 0381 5197 102
Leibniz-Institut für Ostseeforschung Warnemünde, Seestr. 15, D-18119 Rostock
Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen rund 13.500 Mitarbeiterinnen und Mitarbeiter und haben einen Gesamtetat von 1,1 Milliarden Euro.

Dr. Barbara Hentzsch | idw
Weitere Informationen:
http://www.leibniz-gemeinschaft.de

Weitere Berichte zu: Bakterium Denitrifizierung Organismus Ostsee Wasserschicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics