Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom unabhängigen Leben in Dunkelheit

09.02.2007
Neues DFG-Projekt widmet sich Mikroorganismen, die im Tiefenwasser der Ostsee ohne Licht und Sauerstoff autotroph leben können.

Ob an Land oder im Meer - ein Leben unabhängig von Licht, Sauerstoff und "Nahrung", ist nur den ganz kleinen Organismen möglich. Viele von ihnen kennen wir noch nicht einmal. Das ist auch in der Ostsee so, obwohl unser Hausmeer zu den am besten untersuchten Meeresregionen der Welt gehört und die sauerstofffreien Zonen gerade hier sehr verbreitet sind.

Doch bedingt durch ihre geringe Größe entzogen sich die Mikroorganismen lange Zeit einer eingehenden Untersuchung. Erst mit der Entwicklung molekularbiologischer Methoden lassen sie sich allmählich besser erkennen und verstehen. Die Mikro- und Molekularbiologen der Arbeitsgruppe um Prof. Dr. Klaus Jürgens vom Leibniz-Institut für Ostseeforschung Warnemünde sind diesen Organismen schon seit einigen Jahren auf der Spur. Die Deutsche Forschungsgemeinschaft wird ihre Arbeit nun in den nächsten 2 Jahren mit zusätzlichem Fördergeld unterstützen.

Das Leben in den Tiefenbecken der zentralen Ostsee steckt für Mikrobiologen voller Faszination. Dort wo kein Licht mehr hingelangt, in sauerstofffreiem und sulfidischem Wasser leben Bakterien, die es schaffen, trotz absoluter Dunkelheit erhebliche Mengen an Kohlendioxid zu fixieren und damit zu wachsen. Anstelle der Photosynthese nutzen sie die so genannte Chemosynthese - sie ziehen aus lichtunabhängigen chemischen Reaktionen die Energie zum Aufbau organischer Substanz.

Bereits vor 15 Jahren gab es erste Hinweise, dass sich hinter diesen autotrophen Organismen Bakterien verbergen könnten, die ihre Energie aus der Sulfidoxidation und Nitratreduktion gewinnen. Insbesondere die Nitratreduktion, die so genannte Denitrifizierung, ist eine Leistung die man nicht genug hervorheben kann, denn in der stark überdüngten Ostsee sorgt die Denitrifizierung dafür, dass zumindest ein Teil des "Düngemittels" Nitrat dem Kreislauf wieder entzogen wird.

Inzwischen konnte diese Theorie der Denitrifizierung durch autotrophe Bakterien bestätigt und ein für diesen Prozess verantwortlicher Schlüsselorganismus molekularbiologisch identifiziert werden. Im Jahr 2006 gelang es schließlich dem Warnemünder Mikrobiologen Dr. Matthias Labrenz aus der Arbeitsgruppe Jürgens, zusammen mit seinen Mitarbeitern erstmals dieses Bakterium zu kultivieren. Es bekam von ihnen den spröden Namen "GD1" (Gotland Deep Nr. 1).

Obwohl mit der Identifizierung seiner Schlüsselfunktion bei der Denitrifizierung ein wichtiger Schritt erfolgt ist, gibt der Organismus noch viele Rätsel auf. Daher wird mit Nachdruck daran gearbeitet, seine weiteren Fähigkeiten und Möglichkeiten besser kennen zu lernen. Finanziert durch die renommierte Gordon and Betty Moore Foundation lassen die Warnemünder Mikrobiologen seit letzten Sommer am amerikanischen Craig-Venter-Institute die Genom-Sequenzierung des Gotlandtief-Organismus durchführen. Gemeinsam mit dem Max-Planck-Institut für Marine Mikrobiologie in Bremen arbeiten sie an der Analyse des Genoms, in Kooperation mit der Ernst-Moritz-Arndt-Universität Greifswald soll das Proteom von GD1 untersucht werden.

Besonders überraschend und fast schon "mysteriös" ist es für die Forscher allerdings, dass gerade in Wasserschichten unterhalb des Hauptlebensraumes von GD1, in Bereichen, die nicht nur Sauerstoff- sondern auch Nitratfrei sind, die mikrobiellen Kohlendioxid-Fixierungsraten um ein Vielfaches höher sind. Es ist zurzeit noch fraglich, welche Organismen oder Prozesse dafür verantwortlich sein könnten. Mit dem neuen DFG-Projekt will man "Licht" ins Dunkel bringen. Ist es vielleicht sogar GD1, der, obwohl zahlenmäßig geringer vertreten als in den höheren Wasserschichten, hier - ohne Nitrat - aktiver ist? Oder wird er durch andere, noch unbekannte Bakterien abgelöst? Die Antwort soll durch einen kombinierten Einsatz von Gensonden, 14CO2 und 13CO2-Fixierungsversuchen sowie Genexpressionsanalysen aus den fraglichen Wasserschichten gefunden werden.

Die Warnemünder Forscher sind sich sicher: Die Lösung dieses Rätsels ist der Schlüssel zu einem neuen Verständnis der Lebenszusammenhänge an der Grenzfläche zwischen Sauerstoffhaltigen und Sauerstofffreien Wasserschichten und somit in weiten Bereichen der Ostsee, des Schwarzen Meeres und vielen Schelfregionen.

Kontakt:
Dr. Matthias Labrenz, Tel.: 0381 5197 378
Dr. Barbara Hentzsch, Tel.: 0381 5197 102
Leibniz-Institut für Ostseeforschung Warnemünde, Seestr. 15, D-18119 Rostock
Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen rund 13.500 Mitarbeiterinnen und Mitarbeiter und haben einen Gesamtetat von 1,1 Milliarden Euro.

Dr. Barbara Hentzsch | idw
Weitere Informationen:
http://www.leibniz-gemeinschaft.de

Weitere Berichte zu: Bakterium Denitrifizierung Organismus Ostsee Wasserschicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive