Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gel gibt künstlichen Muskeln Kraft

26.01.2007
Forscher konstruieren aus einem neuen Werkstoff künstliche Muskeln und Greifarme

Für einen Sportler sind gallertartige Muskeln kein Grund zur Freude - für Materialwissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der amerikanischen Bell Laboratories schon: Sie haben aus einem Gel und Siliziumnadeln einen Werkstoff entwickelt, der wie ein Muskel arbeitet. Aus dem aktiven Material haben sie auch nanometergroße Greifarme konstruiert. Sie griffen dabei auf ein einfaches, aber äußerst effektives Prinzip der Natur zurück. Sie nutzten nämlich die Fähigkeit von Gelen, Wasser aufzunehmen und abzugeben und dabei mechanische Arbeit zu verrichten - ganz so, wie es auch Pflanzen können (Science, 26. Januar 2007).


Das aktive Hybridmaterial HAIRS-1 bildet einen künstlichen Muskel, der sich hier von links nach rechts bewegt. Solche aktiven biomimetischen Nanosysteme könnten in Zukunft als Mikroaktuatoren oder in der Mikrofluidik Bedeutung erhalten. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Der aktive Hybridwerkstoff HAIRS-2 bildet hier einen vierarmigen Greifer. Die Wissenschaftler stellen sich vor, den neuen Werkstoff zum Beispiel für den Bau von Mikrogreifern und anderen Bewegungssystemen einzusetzen, welche durch Veränderungen der Luftfeuchtigkeit angetrieben werden. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Manche Blüten öffnen sich bei Tag scheinbar wie von selbst und schließen sich, sobald es wieder dunkel wird. Es scheint, als hätten sie Muskeln. Tatsächlich bewegen aber gelartige Substanzen die Blütenblätter, indem sie abhängig von der Luftfeuchtigkeit schwellen oder schrumpfen. In der Natur bedienen sich nicht nur Blüten dieses hydraulischen Mechanismus, sondern auch Tannenzapfen oder auch der fleischfressende Sonnentau.

Die Wissenschaftler nutzten diesen Mechanismus nun für neuartige Werkstoffe, genannt HAIRS (hydrogel high-aspect-ratio rigid structures) - Hybridsysteme aus nanometergroßen Siliziumnadeln und einem Hydrogel. "Das Besondere des Hybridwerkstoffs ist die Kombination steifer und unflexibler Körper, der Siliziumnadeln, mit elastischen und weichen Verbindungselementen, dem Gel", sagt Prof. Peter Fratzl, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung. Dadurch entsteht ein aktiver Werkstoff, also ein Stoff der Arbeit verrichten kann. Je nach Luftfeuchtigkeit verändert das Gel nämlich seine Oberfläche - es schrumpft oder es schwillt an und verändert dadurch die Orientierung der Siliziumnadeln. Mit diesem einfachen Prinzip stellten die Wissenschaftler zwei unterschiedliche Werkstoffe her: HAIRS-1 und HAIRS-2.

... mehr zu:
»Gel »HAIRS-1 »HAIRS-2 »Muskel »Nadel »Siliziumnadel

Bei HAIRS-1 sind die Siliziumnadeln im Gel verteilt und parallel ausgerichtet. Schrumpft das Gel zusammen, zieht es an den Siliziumnadeln und kippt sie zur Seite. Das Material verhält sich wie ein künstlicher Muskel. Bei HAIRS-1 sind die Siliziumnadeln nur in das Gel eingebettet, dagegen sind bei HAIRS-2 die Nadeln zusätzlich fest auf einer Siliziumoberfläche verankert. Mit folgender Auswirkung: "Im Gegensatz zu HAIRS-1 können die Siliziumnadeln bei HAIRS-2 nicht kippen, wenn das Gel schrumpft", erklärt Fratzl. Bei HAIRS-2 müssen sich die Nadeln verbiegen - jeweils vier der benachbarten Nadeln biegen sich aufeinander zu und bilden einen vierarmigen Greifer.

Diese spezielle Anordnung ergibt sich, da beim Schrumpfen des Gels Kapillarkräfte auftreten. Das Gel verhält sich wie Wasser auf einer Oberfläche - es strebt danach, seine Oberflächenspannung zu verringern. Deshalb sitzt jeweils ein Geltröpfchen zwischen vier Nadeln, die sozusagen die Eckpfeiler bilden. Schrumpft das Gel nun, zieht es die Nadeln an den Ecken nach innen, es entsteht der vierarmige Greifer. Die Greifbewegung der Nadeln ist komplett reversibel - wird das Gel wieder feucht, dehnt es sich aus und die Nadeln bewegen sich in ihre aufrechte Position zurück.

Um die Hybridwerkstoffe herzustellen, ätzten die Wissenschaftler zuerst einen Wald aus Siliziumstämmen in eine Siliziumscheibe. Die aufrechten Nadeln aus Silizium sind anschließend nur hundert bis dreihundert Nanometer dick und gerade mal fünf bis acht Mikrometer lang. Sie bedecken die Fläche der Siliziumscheibe in einem regelmäßigen Abstand von wenigen Mikrometern. Anschließend füllten die Wissenschaftler diese kammartige Struktur mit einem Gel, das sich chemisch fest an die Siliziumnadeln bindet. Für HAIRS-1 brechen die Wissenschaftler die Siliziumnadeln schließlich noch von ihrem Substrat ab - die Nadeln besitzen dann zwar eine geordnete Struktur, werden aber nur durch das Gel fixiert.

Das mechanische Prinzip, nach dem HAIRS-1 arbeitet, erkannte bereits der amerikanischen Ingenieur und Architekt Richard Buckminster-Fuller (1895-1983). Buckminster-Fuller konstruierte Gebäude aus steifen Stangen mit elastischen Bändern. Solche Strukturen sind flexibel und trotzdem stabil: Sie halten Wind und großen Schneelasten stand. Er führte für dieses Prinzip den Begriff Tensegrität (aus tension für Spannung und integrity für Unversehrtheit oder Festigkeit) ein. Biologen erkannten später, dass auch das mechanische Verhalten von Zellen dem Prinzip der Tensegrität folgt. Der neue Hybridwerkstoff ist aber der erste aktive Werkstoff, der diese der Natur abgeschaute Methode nutzt. "Wir haben uns von der Biologie zu diesem aktiven Werkstoff inspirieren lassen", sagt Fratzl: "Er könnte für Mikroaktuatoren oder in der Mikrofluidik eine Anwendung finden."

Originalveröffentlichung:

Alexander Sidorenko, Tom Krupenkin, Ashley Taylor, Peter Fratzl, Joanna Aizenberg
Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns

Science, 26. Januar 2007

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Gel HAIRS-1 HAIRS-2 Muskel Nadel Siliziumnadel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten