Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gel gibt künstlichen Muskeln Kraft

26.01.2007
Forscher konstruieren aus einem neuen Werkstoff künstliche Muskeln und Greifarme

Für einen Sportler sind gallertartige Muskeln kein Grund zur Freude - für Materialwissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der amerikanischen Bell Laboratories schon: Sie haben aus einem Gel und Siliziumnadeln einen Werkstoff entwickelt, der wie ein Muskel arbeitet. Aus dem aktiven Material haben sie auch nanometergroße Greifarme konstruiert. Sie griffen dabei auf ein einfaches, aber äußerst effektives Prinzip der Natur zurück. Sie nutzten nämlich die Fähigkeit von Gelen, Wasser aufzunehmen und abzugeben und dabei mechanische Arbeit zu verrichten - ganz so, wie es auch Pflanzen können (Science, 26. Januar 2007).


Das aktive Hybridmaterial HAIRS-1 bildet einen künstlichen Muskel, der sich hier von links nach rechts bewegt. Solche aktiven biomimetischen Nanosysteme könnten in Zukunft als Mikroaktuatoren oder in der Mikrofluidik Bedeutung erhalten. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Der aktive Hybridwerkstoff HAIRS-2 bildet hier einen vierarmigen Greifer. Die Wissenschaftler stellen sich vor, den neuen Werkstoff zum Beispiel für den Bau von Mikrogreifern und anderen Bewegungssystemen einzusetzen, welche durch Veränderungen der Luftfeuchtigkeit angetrieben werden. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Manche Blüten öffnen sich bei Tag scheinbar wie von selbst und schließen sich, sobald es wieder dunkel wird. Es scheint, als hätten sie Muskeln. Tatsächlich bewegen aber gelartige Substanzen die Blütenblätter, indem sie abhängig von der Luftfeuchtigkeit schwellen oder schrumpfen. In der Natur bedienen sich nicht nur Blüten dieses hydraulischen Mechanismus, sondern auch Tannenzapfen oder auch der fleischfressende Sonnentau.

Die Wissenschaftler nutzten diesen Mechanismus nun für neuartige Werkstoffe, genannt HAIRS (hydrogel high-aspect-ratio rigid structures) - Hybridsysteme aus nanometergroßen Siliziumnadeln und einem Hydrogel. "Das Besondere des Hybridwerkstoffs ist die Kombination steifer und unflexibler Körper, der Siliziumnadeln, mit elastischen und weichen Verbindungselementen, dem Gel", sagt Prof. Peter Fratzl, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung. Dadurch entsteht ein aktiver Werkstoff, also ein Stoff der Arbeit verrichten kann. Je nach Luftfeuchtigkeit verändert das Gel nämlich seine Oberfläche - es schrumpft oder es schwillt an und verändert dadurch die Orientierung der Siliziumnadeln. Mit diesem einfachen Prinzip stellten die Wissenschaftler zwei unterschiedliche Werkstoffe her: HAIRS-1 und HAIRS-2.

... mehr zu:
»Gel »HAIRS-1 »HAIRS-2 »Muskel »Nadel »Siliziumnadel

Bei HAIRS-1 sind die Siliziumnadeln im Gel verteilt und parallel ausgerichtet. Schrumpft das Gel zusammen, zieht es an den Siliziumnadeln und kippt sie zur Seite. Das Material verhält sich wie ein künstlicher Muskel. Bei HAIRS-1 sind die Siliziumnadeln nur in das Gel eingebettet, dagegen sind bei HAIRS-2 die Nadeln zusätzlich fest auf einer Siliziumoberfläche verankert. Mit folgender Auswirkung: "Im Gegensatz zu HAIRS-1 können die Siliziumnadeln bei HAIRS-2 nicht kippen, wenn das Gel schrumpft", erklärt Fratzl. Bei HAIRS-2 müssen sich die Nadeln verbiegen - jeweils vier der benachbarten Nadeln biegen sich aufeinander zu und bilden einen vierarmigen Greifer.

Diese spezielle Anordnung ergibt sich, da beim Schrumpfen des Gels Kapillarkräfte auftreten. Das Gel verhält sich wie Wasser auf einer Oberfläche - es strebt danach, seine Oberflächenspannung zu verringern. Deshalb sitzt jeweils ein Geltröpfchen zwischen vier Nadeln, die sozusagen die Eckpfeiler bilden. Schrumpft das Gel nun, zieht es die Nadeln an den Ecken nach innen, es entsteht der vierarmige Greifer. Die Greifbewegung der Nadeln ist komplett reversibel - wird das Gel wieder feucht, dehnt es sich aus und die Nadeln bewegen sich in ihre aufrechte Position zurück.

Um die Hybridwerkstoffe herzustellen, ätzten die Wissenschaftler zuerst einen Wald aus Siliziumstämmen in eine Siliziumscheibe. Die aufrechten Nadeln aus Silizium sind anschließend nur hundert bis dreihundert Nanometer dick und gerade mal fünf bis acht Mikrometer lang. Sie bedecken die Fläche der Siliziumscheibe in einem regelmäßigen Abstand von wenigen Mikrometern. Anschließend füllten die Wissenschaftler diese kammartige Struktur mit einem Gel, das sich chemisch fest an die Siliziumnadeln bindet. Für HAIRS-1 brechen die Wissenschaftler die Siliziumnadeln schließlich noch von ihrem Substrat ab - die Nadeln besitzen dann zwar eine geordnete Struktur, werden aber nur durch das Gel fixiert.

Das mechanische Prinzip, nach dem HAIRS-1 arbeitet, erkannte bereits der amerikanischen Ingenieur und Architekt Richard Buckminster-Fuller (1895-1983). Buckminster-Fuller konstruierte Gebäude aus steifen Stangen mit elastischen Bändern. Solche Strukturen sind flexibel und trotzdem stabil: Sie halten Wind und großen Schneelasten stand. Er führte für dieses Prinzip den Begriff Tensegrität (aus tension für Spannung und integrity für Unversehrtheit oder Festigkeit) ein. Biologen erkannten später, dass auch das mechanische Verhalten von Zellen dem Prinzip der Tensegrität folgt. Der neue Hybridwerkstoff ist aber der erste aktive Werkstoff, der diese der Natur abgeschaute Methode nutzt. "Wir haben uns von der Biologie zu diesem aktiven Werkstoff inspirieren lassen", sagt Fratzl: "Er könnte für Mikroaktuatoren oder in der Mikrofluidik eine Anwendung finden."

Originalveröffentlichung:

Alexander Sidorenko, Tom Krupenkin, Ashley Taylor, Peter Fratzl, Joanna Aizenberg
Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns

Science, 26. Januar 2007

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Gel HAIRS-1 HAIRS-2 Muskel Nadel Siliziumnadel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte