Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gel gibt künstlichen Muskeln Kraft

26.01.2007
Forscher konstruieren aus einem neuen Werkstoff künstliche Muskeln und Greifarme

Für einen Sportler sind gallertartige Muskeln kein Grund zur Freude - für Materialwissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der amerikanischen Bell Laboratories schon: Sie haben aus einem Gel und Siliziumnadeln einen Werkstoff entwickelt, der wie ein Muskel arbeitet. Aus dem aktiven Material haben sie auch nanometergroße Greifarme konstruiert. Sie griffen dabei auf ein einfaches, aber äußerst effektives Prinzip der Natur zurück. Sie nutzten nämlich die Fähigkeit von Gelen, Wasser aufzunehmen und abzugeben und dabei mechanische Arbeit zu verrichten - ganz so, wie es auch Pflanzen können (Science, 26. Januar 2007).


Das aktive Hybridmaterial HAIRS-1 bildet einen künstlichen Muskel, der sich hier von links nach rechts bewegt. Solche aktiven biomimetischen Nanosysteme könnten in Zukunft als Mikroaktuatoren oder in der Mikrofluidik Bedeutung erhalten. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Der aktive Hybridwerkstoff HAIRS-2 bildet hier einen vierarmigen Greifer. Die Wissenschaftler stellen sich vor, den neuen Werkstoff zum Beispiel für den Bau von Mikrogreifern und anderen Bewegungssystemen einzusetzen, welche durch Veränderungen der Luftfeuchtigkeit angetrieben werden. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Manche Blüten öffnen sich bei Tag scheinbar wie von selbst und schließen sich, sobald es wieder dunkel wird. Es scheint, als hätten sie Muskeln. Tatsächlich bewegen aber gelartige Substanzen die Blütenblätter, indem sie abhängig von der Luftfeuchtigkeit schwellen oder schrumpfen. In der Natur bedienen sich nicht nur Blüten dieses hydraulischen Mechanismus, sondern auch Tannenzapfen oder auch der fleischfressende Sonnentau.

Die Wissenschaftler nutzten diesen Mechanismus nun für neuartige Werkstoffe, genannt HAIRS (hydrogel high-aspect-ratio rigid structures) - Hybridsysteme aus nanometergroßen Siliziumnadeln und einem Hydrogel. "Das Besondere des Hybridwerkstoffs ist die Kombination steifer und unflexibler Körper, der Siliziumnadeln, mit elastischen und weichen Verbindungselementen, dem Gel", sagt Prof. Peter Fratzl, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung. Dadurch entsteht ein aktiver Werkstoff, also ein Stoff der Arbeit verrichten kann. Je nach Luftfeuchtigkeit verändert das Gel nämlich seine Oberfläche - es schrumpft oder es schwillt an und verändert dadurch die Orientierung der Siliziumnadeln. Mit diesem einfachen Prinzip stellten die Wissenschaftler zwei unterschiedliche Werkstoffe her: HAIRS-1 und HAIRS-2.

... mehr zu:
»Gel »HAIRS-1 »HAIRS-2 »Muskel »Nadel »Siliziumnadel

Bei HAIRS-1 sind die Siliziumnadeln im Gel verteilt und parallel ausgerichtet. Schrumpft das Gel zusammen, zieht es an den Siliziumnadeln und kippt sie zur Seite. Das Material verhält sich wie ein künstlicher Muskel. Bei HAIRS-1 sind die Siliziumnadeln nur in das Gel eingebettet, dagegen sind bei HAIRS-2 die Nadeln zusätzlich fest auf einer Siliziumoberfläche verankert. Mit folgender Auswirkung: "Im Gegensatz zu HAIRS-1 können die Siliziumnadeln bei HAIRS-2 nicht kippen, wenn das Gel schrumpft", erklärt Fratzl. Bei HAIRS-2 müssen sich die Nadeln verbiegen - jeweils vier der benachbarten Nadeln biegen sich aufeinander zu und bilden einen vierarmigen Greifer.

Diese spezielle Anordnung ergibt sich, da beim Schrumpfen des Gels Kapillarkräfte auftreten. Das Gel verhält sich wie Wasser auf einer Oberfläche - es strebt danach, seine Oberflächenspannung zu verringern. Deshalb sitzt jeweils ein Geltröpfchen zwischen vier Nadeln, die sozusagen die Eckpfeiler bilden. Schrumpft das Gel nun, zieht es die Nadeln an den Ecken nach innen, es entsteht der vierarmige Greifer. Die Greifbewegung der Nadeln ist komplett reversibel - wird das Gel wieder feucht, dehnt es sich aus und die Nadeln bewegen sich in ihre aufrechte Position zurück.

Um die Hybridwerkstoffe herzustellen, ätzten die Wissenschaftler zuerst einen Wald aus Siliziumstämmen in eine Siliziumscheibe. Die aufrechten Nadeln aus Silizium sind anschließend nur hundert bis dreihundert Nanometer dick und gerade mal fünf bis acht Mikrometer lang. Sie bedecken die Fläche der Siliziumscheibe in einem regelmäßigen Abstand von wenigen Mikrometern. Anschließend füllten die Wissenschaftler diese kammartige Struktur mit einem Gel, das sich chemisch fest an die Siliziumnadeln bindet. Für HAIRS-1 brechen die Wissenschaftler die Siliziumnadeln schließlich noch von ihrem Substrat ab - die Nadeln besitzen dann zwar eine geordnete Struktur, werden aber nur durch das Gel fixiert.

Das mechanische Prinzip, nach dem HAIRS-1 arbeitet, erkannte bereits der amerikanischen Ingenieur und Architekt Richard Buckminster-Fuller (1895-1983). Buckminster-Fuller konstruierte Gebäude aus steifen Stangen mit elastischen Bändern. Solche Strukturen sind flexibel und trotzdem stabil: Sie halten Wind und großen Schneelasten stand. Er führte für dieses Prinzip den Begriff Tensegrität (aus tension für Spannung und integrity für Unversehrtheit oder Festigkeit) ein. Biologen erkannten später, dass auch das mechanische Verhalten von Zellen dem Prinzip der Tensegrität folgt. Der neue Hybridwerkstoff ist aber der erste aktive Werkstoff, der diese der Natur abgeschaute Methode nutzt. "Wir haben uns von der Biologie zu diesem aktiven Werkstoff inspirieren lassen", sagt Fratzl: "Er könnte für Mikroaktuatoren oder in der Mikrofluidik eine Anwendung finden."

Originalveröffentlichung:

Alexander Sidorenko, Tom Krupenkin, Ashley Taylor, Peter Fratzl, Joanna Aizenberg
Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns

Science, 26. Januar 2007

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Gel HAIRS-1 HAIRS-2 Muskel Nadel Siliziumnadel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Kompositmaterial für die Wasseraufbereitung
18.01.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau