Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

La-Ola-Wellen im Fliegenflügel

26.01.2007
Dresdner Max-Planck-Forscher spüren Morphogenen im Fliegenembryo nach

Bei der frühen Entwicklung eines Organismus spielen sogenannte Gradienten eine wichtige Rolle: Erst wenn die Konzentration bestimmter Signalübertragungsmoleküle (Morphogene) zwischen zwei räumlich definierten Punkten die jeweiligen Schwellenwerte erreicht hat, werden in der Zielzelle die entsprechenden Gene aktiviert. Gleich einer La-Ola-Welle aus Molekülen bewegt sich der Konzentrationsgradient durch den sich entwickelnden Organismus und kontrolliert auf diese Weise über kurze und weite Distanzen hinweg Wachstum sowie Muster- oder Formbildung. Wissenschaftler an zwei Dresdner Max-Planck-Instituten haben nun Biologie und Physik zusammengebracht und so zeigen können, dass die kinetischen Parameter, die unterschiedliche "zelluläre La-Ola-Wellen" steuern, und auch die Transportmechanismen, die von solchen Morphogenen genutzt werden, grundlegend verschieden sind (Science, 26. Januar 2007).


Dpp-Gradient im sich entwickelnden Flügel der Fruchtfliege. Das mit einem grün leuchtenden Protein markierte GFP-Dpp ist als vertikaler Streifen im Zentrum des Flügels zu sehen, es bildet einen Konzentrationsgradienten auf beiden Seiten dieser Quelle. Rot gekennzeichnet sind die Domänen, in denen als Reaktion auf den Dpp-Gradienten das Gen Spalt exprimiert wird. Bild: MPI-CBG, Marcos González-Gaitán

Die Forscher interessierten sich für zwei Morphogene in der Fruchtfliege Drosophila melanogaster: Dpp und Wingless. Sie geben der sich entwickelnden Fliege bei der Bildung des Flügels wichtige Informationen über die Positionierung des wachsenden Körperteils - über zwei unterschiedlich weit reichende Gradienten. Schon in vorhergehenden Experimenten hatte das Forscherteam zeigen können, dass das Protein Sara dafür sorgt, dass die Rezeptoren, mit deren Hilfe die Zelle die Morphogen-Konzentration bestimmt, bei der Zellteilung gleichmäßig auf die entstehenden Tochterzellen verteilt werden, indem es den Dpp-Rezeptor in kleine Bläschen integriert (Science, 17. November 2006). Völlig unklar war jedoch, worauf die unterschiedliche Reichweite der beiden Gradienten beruht. Die Dresdner Wissenschaftler untersuchten daher vier kinetische Schlüsselparameter von Dpp und Wingless: die Produktionsrate, den Diffusionskoeffizienten, die Degradationsrate sowie die sogenannte immobile Fraktion - und stellten fest, dass die gemessenen Parameter der beiden Signalmoleküle im Vergleich sehr unterschiedliche Werte aufwiesen.

Darüber hinaus benötigt Dpp für die Bildung eines Gradienten einen an Dynamin gekoppelten Transport von einer Zelle zur Nachbarzelle - Wingless hingegen nicht. Um das herauszufinden, hatten die Forscher eine Technik eingesetzt, mit der man die Mobilität von Proteinen in einer lebenden Zelle bestimmen kann: Bei der FRAP-Methode (Fluorescence Recovery After Photobleaching) werden fluoreszierende Moleküle in einem definierten Bereich durch einen intensiven Lichtimpuls ausgebleicht. Anschließend wird beobachtet, wie sich die Fluoreszenz in diesem Bereich durch das Einwandern von fluoreszenten Molekülen aus den benachbarten Bereichen wiederherstellt. Werden solche fluoreszenten Moleküle an Proteine gekoppelt, so kann man mit Hilfe der FRAP-Methode kinetische Parameter dieser Proteine bestimmen: Bei sich schnell bewegenden Proteinen wandern Proteine aus den Nachbarbereichen nämlich entsprechend schnell in die gebleichte Region ein - die Fluoreszenz in diesem Bereich wird somit in kurzer Zeit wiederhergestellt. Ist das nicht der Fall und die Bewegung eher langsam, dann kann man daraus schließen, dass sich das Molekül für seine Bewegung offenbar an andere Strukturbausteine in der Zelle anbinden muss: "Wir konnten sehen, dass Dpp eine an Dynamin gekoppelte Endozytose braucht, um von Zelle zu Zelle zu kommen, Wingless hingegen nicht", erklärt Marcos González-Gaitán, Gruppenleiter am Max-Planck-Institut für molekulare Zellbiologie und Genetik und mittlerweile Professor an der Universität Genf.

Die Ergebnisse entstanden aus einer engen Zusammenarbeit der Forscher am Max-Planck-Institut für molekulare Zellbiologie und Genetik mit der Arbeitsgruppe von Frank Jülicher am nahe gelegenen Max-Planck-Institut für Physik komplexer Systeme.

[FF/CB]

Originalveröffentlichung:

Anna Kicheva, Periklis Pantazis, Tobias Bollenbach, Yannis Kalaidzidis, Thomas Bittig, Frank Jülicher & Marcos González-Gaitán
Kinetics of Morphogen Gradient Formation
Science, January 26, 2007
Boekel, C., Anja Schwabedissen, Entchev, E., Renaud, O. & González-Gaitán, M.
SARA endosomes and the maintenance of Dpp signaling levels across mitosis
Science, November 17, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: DPP Gradient Max-Planck-Institut Molekül Morphogen Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten