Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomolekulares Material kann Kräfte erzeugen wie lebende Zellen

19.01.2007
Forscher entwickeln Modell-System aus zwei Proteinen und dem Energielieferanten ATP

Wissenschaftler aus Göttingen und Amsterdam (Niederlande) haben ein biomolekulares Material mit außergewöhnlichen Eigenschaften entwickelt: Es kann Aktivität generieren, die der von lebenden Zellen stark ähnelt. Grundlage bildet ein Modell-System, das aus nur drei Komponenten - den Proteinen Aktin und Myosin sowie dem Energielieferanten ATP - besteht.

Diese können ähnliche interne Kräfte erzeugen, wie sie bei der Bewegung von Zellen entstehen. Die Forschungsarbeiten wurden unter der Leitung von Christoph F. Schmidt am III. Physikalischen Institut der Universität Göttingen und dem DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) in Kooperation mit Experten der Freien Universität Amsterdam durchgeführt. Die Ergebnisse, die für Anwendungen in der Biotechnologie und der Pharmakologie von Bedeutung sind, veröffentlicht das Magazin "Science" in seiner aktuellen Ausgabe vom 19. Januar 2007. Bewegung ist für Zellen von grundlegender Bedeutung.

So müssen beispielsweise Verbindungen zwischen Nervenzellen bis zu einem Meter im Körper wachsen, um sich mit anderen Zellen vernetzen zu können. Darüber hinaus ist sie notwendig für die Zellteilung oder den Transport von Botenstoffen innerhalb einer Zelle. Verantwortlich für diese Bewegungsabläufe ist das Skelett der Zelle - das so genannte Zytoskelett. Anders als das starre Knochengerüst des Menschen handelt es sich dabei um ein dynamisches Gebilde, das gleichzeitig die Stabilität und die Beweglichkeit der Zelle sicherstellt. Die molekularen Mechanismen, die der Dynamik des Zellskeletts zu Grunde liegen, sind vielschichtig und äußerst komplex.

Um diese physikalisch besser analysieren zu können, hat Prof. Schmidt zusammen mit Kollegen aus Amsterdam ein stark vereinfachtes Modell-System entwickelt: Es besteht aus den drei Hauptkomponenten, die in Zellen für Bewegung sorgen. Eine dieser Komponenten ist das Protein Aktin, das nicht nur in Zellen vorkommt, sondern als Hauptbestandteil von Muskelgewebe auch zuständig ist für die Muskelkontraktion. Innerhalb von Zellen dient Aktin vor allem der Stabilisierung der Zellmembran und der Zellbewegung. In Kombination mit dem Motorprotein Myosin und dem Energielieferanten Adenosintriphosphat (ATP) erzeugt es in dem von Prof. Schmidt und seinen Kollegen entwickelten Modell-System Kräfte und Bewegungen, wie sie auch in Zellen zu beobachten sind.

Entstanden ist so ein aktives biomolekulares Material mit ungewöhnlichen Eigenschaften. Ähnlich wie das Skelett von Zellen kann es seine mechanische Beschaffenheit verändern und die Steifigkeit fast hundertfach erhöhen. Zum Vergleich: Gummi, aus dem zum Beispiel Autoreifen hergestellt werden, besitzt diese Fähigkeit nicht.

Das vereinfachte Modell-System bietet den Wissenschaftler für die Forschung eine Reihe von Vorteilen: Alle Komponenten des Systems sind bekannt und können unter gut kontrollierten Bedingungen untersucht werden. So lassen sich viel genauer Daten erheben als dies in einer komplexen, lebenden Zelle möglich wäre. Diese detaillierten Informationen machen es möglich, physikalische Gesetzmäßigkeiten von so genannten "Nichtgleichgewichtsmaterialien" zu erforschen. Nichtgleichgewicht im thermodynamischen Sinn bedeutet hier, dass ständig Energie verbraucht wird, was in "gewöhnlichen" technischen Materialien wie Plastik oder Metallen nicht oder nur in einem zu vernachlässigenden Umfang der Fall ist. Darüber hinaus bieten die Forschungsergebnisse neue Ansatzpunkte für die Entwicklung "intelligenter" Materialien, die für Anwendungen in der Biotechnologie oder der Pharmakologie von Interesse sind.

Originalveröffentlichung
Mizuno D, Tardin C, Schmidt CF, MacKintosh FC: Nonequilibrium mechanics of active cytoskeletal networks.

Science 316, 19 January 2007.

Kontaktadresse:
Prof. Dr. Christoph F. Schmidt
Georg-August-Universität Göttingen
Fakultät für Physik - III. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-7740, Fax (0551) 39-7720
e-mail: c.f.schmidt@dpi.physik.uni-goettingen.de

Dr. Kerstin Mauth | idw
Weitere Informationen:
http://www.dpi.physik.uni-goettingen.de

Weitere Berichte zu: ATP Aktin Energielieferant Modell-System Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten