Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Versteckspiel der vier Mangan-Atome

22.12.2006
Neue Entdeckung bringt Wissenschaftler der künstlichen Fotosynthese einen großen Schritt näher

Die Natur nahm sich viele Millionen Jahre Zeit, um den wichtigsten chemischen Prozess auf Erden zu optimieren: Die Fotosynthese. In einem hoch komplizierten Pigment-Protein-Komplex werden aus Wasser, Kohlendioxid und Sonnenenergie Zucker sowie der Sauerstoff der Atmosphäre erzeugt, die menschliches Leben erst ermöglichen. Weltweit versuchen Wissenschaftler, diesen Prozess detailliert zu verstehen, um ihn schließlich künstlich nachzuahmen und damit eine unerschöpfliche und umweltfreundliche Energiequelle zu erschließen.

Mit einer Entdeckung sind Wissenschaftler des Max-Volmer-Laboratoriums für Biophysikalische Chemie am Institut für Chemie der TU Berlin zusammen mit Kollegen vom Lawrence Berkeley National Laboratory in Kalifornien sowie der FU Berlin und dem Max-Planck-Institut Mülheim der Lösung des Rätsels nun einen entscheidenden Schritt näher gekommen.

"Konkret haben wir die Struktur des so genannten Fotosystems II bestimmt, das mit Sonnenenergie Wasser spaltet", erklärt Dr. Athina Zouni. Sie ist Leiterin der Arbeitsgruppe, die bereits Ende 2005 Aufsehen mit neuen Erkenntnissen zur Fotosynthese erregte, veröffentlicht in "Nature" im Dezember 2005.

... mehr zu:
»Fotosynthese »Mangan-Atome

Im entscheidenden Wasser spaltenden Zentrum des Fotosystems II sind vier Mangan-, ein Kalzium- und mindestens fünf Sauerstoff-Atome verknüpft. Doch die richtige geometrische Anordnung der Atome konnte noch nicht ermittelt werden. Mindestens 18 Modelle wurden in der Vergangenheit diskutiert. Ohne diese Anordnung kann aber der Mechanismus der Wasserspaltung nicht verstanden und somit auch nicht für eine künstliche Fotosynthese nutzbar gemacht werden.

"Wir konnten die Lösung nur durch internationale Zusammenarbeit finden", erzählt Athina Zouni. "Zur Strukturbestimmung muss das Fotosystem II Röntgenstrahlen ausgesetzt werden. Dabei kann das Mangan-Zentrum beschädigt werden. Die Amerikaner entwickelten dafür eine schonendere Messmethode, die mit den Daten der Kristallographie an der FU Berlin verknüpft wurde. Wir an der TU Berlin mussten mehr als hundert winzige Protein-Kristalle von etwa 1 x 0,3 Millimetern heranzüchten. Am Computer wurden alle möglichen Anordnungen mit den experimentellen Ergebnissen verglichen."

Schließlich blieb nur eine mögliche Anordnung übrig: Der Cluster besteht aus vier Mangan-Atomen, die jeweils über zwei Sauerstoff-Atome verbrückt sind. "Das Versteckspiel der Mangan-Atome ist damit beendet. Jetzt beginnt eine neue Phase der Forschung, die uns der Entwicklung künstlicher Katalysatoren zur Energiegewinnung näher bringt.

Weitere Informationen erteilt Ihnen gern: Dr. Athina Zouni, Technische Universität Berlin, Institut für Chemie, Fachgruppe Physikalische und Theoretische Chemie
Tel.: 030- 314-2 55 80, E-Mail: zouni@phosis1.chem.tu-berlin.de
Internet: mvl.chem.tu-berlin.de/research/zouni-irrgang/

Ramona Ehret | idw
Weitere Informationen:
http://www.tu-berlin.de/presse/pi/2006/pi312.htm
http://mvl.chem.tu-berlin.de/research/zouni-irrgang/

Weitere Berichte zu: Fotosynthese Mangan-Atome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten