Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefsee-Mikrobe - biochemischer Trick unter Extrembedingungen

19.12.2006
Mehr Wissen über die Geheimnisse der Nitrogenase

Ein Forscherteam der University of Washington in Seattle hat ein Tiefseelebewesen entdeckt, das auch unter extremen Bedingungen Stickstoff in eine bioverfügbare Form verwandeln kann. Das Team um Mausmi Mehta und John Baross hatte Tiefseekrater im Pazifischen Ozean untersucht und dort Lebewesen gefunden, die bei Temperaturen von 92 Grad Luftstickstoff reduzieren, berichten sie in der jüngsten Ausgabe des Wissenschaftsmagazins Science.

Seit Jahren arbeiten Wissenschaftler daran, den Luftstickstoff N2 so zu reduzieren, dass er in eine biologisch verfügbare Form gebracht wird. Dieses Wissen sollte in Zukunft nämlich auch industriell genutzt werden. "Das würde den Einsatz von Kunstdünger deutlich reduzieren", meint Sebastian Gayler vom Institut für Bodenökologie am GSF-Forschungszentrum in pressetext-Gespräch. Jedes Lebewesen braucht Stickstoff, der zumeist in Form von N2 gebunden ist. Nur relativ wenige Mikroben sind in der Lage N2 so aufzuspalten, dass er in den Zellen genutzt werden kann, also bioverfügbar wird. Das große Problem dabei ist, dass N2 ein sehr stabiles Molekül mit hoher Bindungsenergie ist. Der Enyzymkomplex namens Nitrogenase ist in der Lage, diese Reduktion vorzunehmen - bisher wussten Forscher, dass dies bis Temperaturen von 66 Grad möglich war.

Was die beiden Forscher besonders interessierte war die Frage, wie diese Fähigkeit der Stickstoff-Reduktion im Lauf der Geschichte entstand. Die Forscher hatten sich daher auf die Suche nach solchen Stickstoff-Fixierern am Ozeangrund gemacht. Das Archaeon lebt wahrscheinlich vorwiegend in Tiefen von etwa 100 Metern unter der Meeresoberfläche. Dort ist Sauerstoff nur in geringen Mengen vorhanden, daher nehmen die Forscher an, dass die Fähigkeit Stickstoff zu fixieren bereits sehr lange existent ist, da diese Lebewesen ansonsten nicht hätten überleben können. Als Produkt dieser Reaktion entsteht dann Ammoniak. Wissenschaftler wie etwa Jonathan Zehr von der University of California in Santa Cruz sehen in der Entdeckung der beiden Forscher jedenfalls interessante Ansätze.

"Es handelt sich um Grundlagenforschung und eine direkte Umsetzung der Ergebnisse ist in weiter Ferne", so Gayler. "Man kennt schon lange verschiedene Bakterien und Archaeen, die Stickstoff aus der Luft fixieren, und das bei wesentlich niedrigeren Temperaturen - wie etwa die Symbiose Leguminosen Knöllchenbakterien", erklärt der Forscher. "Den Autoren scheint es zunächst darum zu gehen, den Prozess zu verstehen, um aus dem gewonnenen Prozessverständnis irgendwann einmal zu einer technischen Anwendung zu kommen."

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.sciencemag.org
http://www.gsf.de

Weitere Berichte zu: Lebewesen Luftstickstoff Nitrogenase Stickstoff Tiefsee-Mikrobe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie