Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radiochemiker synthetisieren Hassium-270: Die doppelte Magie der superschweren Kerne

15.12.2006
Einer internationalen Kollaboration, angeführt von Wissenschaftlern des Instituts für Radiochemie der TU München in Garching (Dr. Alexander Yakushev, Lehrstuhl Prof. Andreas Türler) und der Gesellschaft für Schwerionenforschung in Darmstadt, ist es erstmals gelungen, nur vier Atome des Kerns Hassium-270 zu synthetisieren und nachzuweisen.

Mit ihrer Arbeit, die im renommierten Journal "Physical Review Letters" (Physical Review Letters 97, 242501 (2006)) publiziert wurde, haben die Wissenschaftler experimentell gezeigt, dass der Weg zu superschweren Elementen über eine näher gelegene, ebenfalls durch Schaleneffekte stabilisierte Region führt. Auch innovativen Chemikern steht somit die Erforschung aller bisher nur mit physikalischen Methoden nachgewiesenen Elemente im Periodensystem offen.


Berechnete Schalenstabilisierung (in MeV) der schweren und superschweren Elemente mit Ordnungszahlen zwischen 82 und 120. Hassium-270 ist ein im Grundszustand deformierter Kern, während 298114 (bisher noch nicht experimentell nachgewiesen) sphärisch sein sollte (modifiziert aus A. Sobiczewski et al., Phys. Rev. C63 (2001). Abbildung: Institut für Radiochemie, TU München

Das schwerste in größeren Mengen in der Natur vorkommende Element ist Uran mit der Ordnungszahl 92. Forscher fragen jedoch: Wie schwer kann ein Kern werden, ohne spontan in zwei Fragmente zu zerfallen? Und gibt es nicht doch weitaus schwerere Elemente, die sich eventuell sogar in der Natur nachweisen lassen?

In den letzten Jahrzehnten konnten Wissenschaftler an Beschleunigern wenige Atome bis hin zum Element 118 künstlich synthetisieren, indem sie leichtere Elemente fusionierten. Die schwersten so hergestellten Elemente sind jedoch alle radioaktiv und bestehen jeweils nur für kurze Zeit. Ihre Existenz verdanken sie dem sogenannten Schaleneffekt: "Magische" Zahlen von Protonen und Neutronen sind in der Lage, einen Kern zusätzlich zu stabilisieren. Kerne, die sowohl eine magische Protonenzahl als auch eine magische Neutronenzahl enthalten, sind "doppelt magisch".

Der schwerste bekannte doppelt magische Kern ist Blei mit der Massenzahl 208. Bereits in den 1960-er Jahren wurde auf Basis des Schalenmodells des Kerns vorhergesagt, es müsse eine Insel der superschweren Elemente geben. Zentrum dieser Insel sollte ein sphärischer, doppelt magischer Kern mit der Ordnungszahl 114 und der Neutronenzahl 184 sein. Anzeichen für die tatsächliche Existenz dieser Region erhöhter Stabilität sind Berichte über eine Serie von Experimenten des Flerov-Labors im russischen Dubna, in denen die Synthese der Elemente 112 bis 118 geglückt sein soll. Neueste theoretische Berechnungen haben nun gezeigt, dass auch deformierte Kerne doppelt magische Schalenabschlüsse bilden können; der nächste Schalenabschluss ist deshalb bereits beim Kern Hassium-270 mit der Ordnungszahl 108 und der Neutronenzahl 162 zu erwarten. Das Auftauchen einer weiteren Insel aus dem "Meer der Instabilität" hat das Bild einer einzigen weit draußen liegenden Insel der superschweren Elemente erheblich modifiziert.

Die Synthese des Hassium-270 gelang den Münchner und Darmstädter Wissenschaftlern, indem sie ein dünnes Target aus Curium-248 mit einem Strahl von Magnesium-26-Ionen über einen Zeitraum von mehreren Wochen intensiv beschossen. Die beiden Atome verschmolzen zum Element Hassium. Um die äußerst selten entstehenden Hassiumatome nachzuweisen, bedienten sich die Forscher eines kontinuierlich arbeitenden chemischen Separationssytems. Da Hassium zur Gruppe 8 des Periodensystems gehört, so wie Osmium, verbindet es sich sehr leicht mit vier Sauerstoffatomen zu einem sehr flüchtigen gasförmigen Molekül. Durch eine kontinuierliche und sehr schnelle gaschromatographische Trennung und eine anschließende Abscheidung in einem Kryodetektor ließ sich der radioaktive Zerfall der synthetisierten Hassiumatome höchst effizient nachweisen. Dabei beobachteten die Forscher, dass Hassium-270 nicht etwa spontan in zwei Bruchstücke zerfällt, sondern erst nach einer gewissen Lebensdauer einen Heliumkern emittiert.

Aus der gemessenen Zerfallsenergie - die sehr gut mit theoretisch vorhergesagten Werten übereinstimmte - konnte auch eine Halbwertszeit des Hassium-270 von immerhin einer halben Minute abgeleitet werden. Durch die Emission eines Heliumkerns verwandelt sich das Hassium-270 in ein leichteres Nuklid: Seaborgium-266. Dieses zerfällt mit einer Halbwertszeit von etwa einer halben Sekunde spontan in zwei Fragmente - wiederum ein Hinweis auf die außerordentliche Stabilität des Hassium-270.

Kontakt:

Prof. Dr. Andreas Türler
Direktor des Instituts für Radiochemie
Technische Universität München
Tel. +49 89 289 12202
E-mail: Andreas.Tuerler@radiochemie.de

Dieter Heinrichsen M.A. | idw
Weitere Informationen:
http://www.radiochemie.de

Weitere Berichte zu: Atom Hassium-270 Neutronenzahl Ordnungszahl Periodensystem

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten