Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Protein vermittelt Berührungsreize

15.12.2006
Die Haut ist das größte Sinnesorgan des Menschen, über das er Berührung und Schmerz wahrnimmt. Christiane Wetzel und ihre Kollegen aus dem Labor von Prof. Gary Lewin vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch haben jetzt erstmals bei Säugetieren ein Molekül nachgewiesen, das eine wichtige Rolle bei der Umwandlung solcher mechanischer Reize in Nervenimpulse spielt.

Sie konnten zeigen, dass dieses Molekül, ein Protein kurz SLP3 genannt, notwendig ist, um feinste Berührungen wahrzunehmen. Ihre Studie liefert damit zugleich den ersten Nachweis eines Rezeptor-Gens für Berührungen bei Säugern. Solche Moleküle könnten in Zukunft wichtige Angriffspunkte für die Therapie chronischer Schmerzen sein. Die Arbeit von Christiane Wetzel und Prof. Lewin ist jetzt in der Fachzeitschrift Nature online (DOI: 10.1038/nature05394)* erschienen.

Christiane Wetzel konnte zeigen, dass Mäuse, denen dieses Protein SLP3 fehlt, unterschiedlich strukturierte Oberflächen nicht voneinander unterscheiden können. Der Grund, so schlussfolgern die Wissenschaftler: rund 35 Prozent der Berührungsrezeptoren in der Haut der Tiere, die kein SLP3 bilden, können diese Reize nicht mehr wahrnehmen.

Obwohl Berührungsreize normalerweise nichts mit Schmerzempfinden zu tun haben, ändert sich das dramatisch bei einer Verletzung der Nerven. Menschen mit Nervenverletzungen empfinden schon starke Schmerzen, wenn sie nur ganz leicht berührt werden. Ärzte sprechen in solchen Fällen von neuropathischem Schmerz.

... mehr zu:
»Berührung »Molekül »Protein »SLP3 »Schmerz

Im Tierversuch zeigte sich, dass Mäuse, denen SLP3 fehlt, trotz Nervenverletzung keine neuropathischen Schmerzen haben, wenn sie leicht berührt werden. Diese Ergebnisse deuten nach Auffassung der Forscher darauf hin, dass Moleküle, die für die Wahrnehmung von Berührungen notwendig sind, künftig Angriffspunkte für die Therapie neuropathischer Schmerzen sein könnten, für die es nur wenige effektive Behandlungen gibt.

Die Nervenzellen (Neuronen), die Berührungs- und Schmerzreize aufnehmen und ins Gehirn übermitteln, befinden sich in den Hinterwurzelganglien des Rückenmarks, haben aber ihre "Fühler", die zahlreichen Fortsätze (Axone) bis in die Haut ausgestreckt. Mechanische Reize auf diese axonalen Endigungen werden von Rezeptoren (Bindestellen) in der Haut aufgenommen und in elektrische Impulse umgewandelt, ins Gehirn weitergeleitet und dort als Berührung oder Schmerz wahrgenommen. Der biologische Vorgang, der der Umwandlung eines mechanischen Reizes in einen Nervenimpuls zugrunde liegt, wird als Mechanotransduktion bezeichnet und ist auf molekularer Ebene bis heute wenig verstanden.

Offenbar sind spezielle Ionenkanäle in der Zellmembran für die Umwandlung mechanischer Reize in elektrische Impulse verantwortlich. Diese Kanäle öffnen sich, wenn auf die Zellmembran leichter Druck ausgeübt wird. Dann strömen geladene Teilchen (Ionen) in die Zelle und lösen ein elektrisches Signal aus.

Dr. Jing Hu, Christiane Wetzel und Prof. Lewin haben die Aktivität solcher Ionenkanäle nach winzigsten Berührungen gemessen und konnten nachweisen, dass SLP3 für eine Reihe solcher berührungssensitver Ionenkanäle notwendig ist.

Diese Arbeit ist die erste, die zeigt, dass ein Protein direkt für die Wahrnehmung von Berührungen in Säugetieren benötigt wird. In einfachen Organismen wie dem Fadenwurm C. elegans und Fruchtfliegen konnte schon eine Reihe von Genen - sie enthalten die Baupläne für die Proteine - dafür identifiziert werden. Das SLP3 Protein ist mit einem ähnlichen Protein von C. elegans, dem MEC-2, verwandt. Ihre Studie liefert zugleich den ersten Nachweis eines Rezeptor-Gens für Berührungen bei Säugern.

*A stomatin-domain protein essential for touch sensation in the mouse

Christiane Wetzel1, Jing Hu1,5, Dieter Riethmacher2,5, Anne Benckendorff1,5, Lena Harder1, Andreas Eilers1, Rabih Moshourab1, Alexey Kozlenkov1, Dominika Labuz3,Ombretta Caspani3, Bettina Erdmann4, Halina Machelska3, Paul A. Heppenstall1,3, and Gary R. Lewin1

1Growth Factors and Regeneration Group, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Robert-Rössle-Str. 10, Berlin-Buch D-13125 Germany. 2Zentrum für Molekulare Neurobiologie, Universität Hamburg, Falkenried 94, 20251 Hamburg, Germany. 3Klinik für Anaesthesiologie und Operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin,Hindenburgdamm 30, D-12200 Berlin, Germany. 4Electronmicroscopy, Max-DelbrückCenter for Molecular Medicine, Robert-Rössle-Str. 10, Berlin-Buch D-13125 Germany. 5These authors made an equal contribution.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Berührung Molekül Protein SLP3 Schmerz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie