Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues vom Insulin-Signalweg: eine überraschende Rolle für Cytohesine

14.12.2006
Die lebenswichtige Funktion von Insulin im Zucker-Stoffwechsel des Körpers ist seit über 80 Jahren bekannt. Wie das Hormon seine Wirkung in den Zellen entfaltet, ist aber noch längst nicht vollständig geklärt.

Dabei bekommt die Erforschung dieser Mechanismen angesichts der rasch steigenden Zahl von Menschen mit Diabetes (Zuckerkrankheit) eine besondere Dringlichkeit. Mit tatkräftiger Unterstützung der Serviceeinheit Monoklonale Antikörper des GSF - Forschungszentrums für Umwelt und Gesundheit konnten Bonner Wissenschaftler nun ein weiteres Element im Netzwerk des Insulin-Signalweges identifizieren: Die so genannten Cytohesine könnten vielleicht in Zukunft ein neuer Ansatzpunkt für die Behandlung von Diabetes werden.

Wenn man etwas isst und der Blutzuckerspiegel im Körper steigt, schüttet die Bauchspeicheldrüse Insulin aus. Die Zucker-Moleküle werden daraufhin in der Leber und den Muskeln von den Zellen aufgenommen und können in Form langer Glykogen-Ketten gespeichert werden.

Die ersten Schritte in diesem lebensnotwendigen Prozess bestehen darin, dass Insulin an den in der Zellmembran sitzenden Insulin-Rezeptor (IR) bindet und dieser verschiedene als Insulin-Rezeptor-Substrate (IRS) bezeichnete Proteine phosphoryliert. In der Folge wird dann über eine Kette mehrerer hintereinander geschalteter Enzyme unter anderem die Glykogensynthase aktiviert.

Eine Forschungsgruppe um Prof. Dr. Michael Famulok von der Universität Bonn hat nun herausgefunden, dass schon der Anfang der Signalübertragung komplizierter ist, als bislang gedacht: Weil nämlich zusätzlich noch Proteine aus der Klasse der Cytohesine beteiligt sind. "Die Cytohesine erhöhen die Effizienz der IRS-Phosphorylierung und damit der Signalübertragung beträchtlich", sagt Dr. Anton Schmitz, wissenschaftlicher Mitarbeiter von Michael Famulok. "Und dass sie hier überhaupt eine Rolle spielen, ist eine völlig neue Erkenntnis."

Denn bekannt ist von den Cytohesinen vor allem, dass sie Zellen helfen, aneinander zu haften - daher auch ihr Name. Diese Fähigkeit brauchen zum Beispiel im Blut treibende Immunzellen, um sich an der Gefäßwand festzuhalten und dann ins umliegende, erkrankte Gewebe einzuwandern. Auf molekularer Ebene helfen Cytosine bestimmten biochemischen Schaltern (GTPasen), vom inaktiven in den aktiven Zustand zu wechseln.

Dass Cytohesine aber eben auch ins "insulin signalling" involviert sind, konnten Schmitz und seine Kollegen mit Hilfe spezifischer Antikörper nachweisen, die Dr. Elisabeth Kremmer von der GSF-Serviceeinheit für Monoklonale Antikörper hergestellt hat. Die Bonner Forscher nahmen dazu Leberzellen, gaben Insulin hinzu und analysierten anschließend die in den Zellen aktivierten Proteine. Mit einem bewährten, gegen den Insulin-Rezeptor gerichteten Antikörper fischten sie den IR und die an ihm dran hängenden Proteine heraus. Der positive Test mit dem neuen Anti-Cytohesin-3-Antikörper bewies dann: Nach Gabe von Insulin lagern sich IR, IRS und Cytohesine zu einem festen Komplex zusammen.

Die Wirkung der Cytohesine im lebenden Organismus bewiesen dann Versuche mit Mäusen. Ihnen wurde eine Substanz (SecinH3) ins Futter gemischt, die stark an Cytohesine bindet und deren Funktion blockiert. Die Untersuchung der Tiere ergab: Die durch Insulin ausgelösten Veränderungen der Expression von Genen des Zucker-Stoffwechsels waren geringer als normal, und außerdem wurde in den Leberzellen der Mäuse weniger Glykogen synthetisiert.

Mit der Entdeckung der Cytohesine als zusätzlichem Mitspieler im komplizierten Regelsystem, das das Insulin-Signal in den Zellen weiterleitet, verbinden die Forscher die Hoffnung auf Fortschritte bei der Therapie von Diabetes Typ 2. Denn bisher gibt es - mit Ausnahme extrem seltener Erbkrankheiten - noch keine Belege dafür, dass der Ausfall eines der schon bekannten Elemente der Signalkette für die charakteristische Insulin-Unempfindlichkeit der Körperzellen bei Typ 2-Diabetikern verantwortlich ist.

Und auch Kremmer ist zufrieden: "Ich freue mich, dass unsere hochwertigen Antikörper wieder einmal anderen Wissenschaftlern geholfen haben, erfolgreiche Spitzenforschung zu betreiben."

Originalartikel: Markus Hafner et al., Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance, Nature, Bd. 444, Nr. 7121, S. 941-944, 14. Dezember 2006

GSF - Forschungszentrum für Umwelt und Gesundheit
Kommunikation
Tel: 089/3187-2460
Fax 089/3187-3324
E-Mail: oea@gsf.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de/neu/Aktuelles/Presse/2006/antikoerper.php

Weitere Berichte zu: Antikörper Cytohesine Diabetes Insulin Insulin-Signalweg Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik