Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zentrale Stellschraube im Insulinstoffwechsel entdeckt

14.12.2006
Wissenschaftler des neuen interdisziplinären LIMES Zentrums (Life & Medical Sciences) der Universität Bonn haben ein neues Gen identifiziert, das eine wichtige Rolle bei der Entstehung der Zuckerkrankheit spielen könnte. Fliegen, bei denen die Erbanlage defekt ist, sind zudem erheblich kleiner als ihre Artgenossen und leben deutlich länger. Das Gen scheint eine so zentrale Bedeutung zu haben, dass es sich seit einer knappen Milliarde Jahren kaum verändert hat: Es kommt in Fliegen, in ähnlicher Form aber auch in Mäusen und im Menschen vor. In der kommenden Ausgabe der Zeitschrift "Nature" vom 14. Dezember veröffentlichen die Bonner gleich zwei Artikel zu diesem Thema.

Manchmal ähnelt Wissenschaft einem Staffellauf: 1996 fand der Biochemiker Professor Dr. Waldemar Kolanus in Säugetieren eine Gruppe von Zelleiweißen, die Cytohesine, und beschrieb ihre Funktion bei der Immunabwehr. Zwei seiner Kollegen im Bonner LIMES-Zentrum fanden nun eine ganz neue und völlig unerwartete Funktion dieser Eiweiße mit großer Relevanz für die Medizin.

"Wir wollten wissen, ob es Cytohesine auch in der Taufliege Drosophila gibt und welche Aufgaben sie dort haben", erinnert sich der Entwicklungsbiologe Prof. Dr. Michael Hoch. Seine Mitarbeiter und er wurden tatsächlich fündig: Sie entdeckten ein Protein, das den Säugetier-Cytohesinen sehr ähnelt. Interessanter noch: Taufliegen, bei denen die Bauanleitung für dieses Gen defekt ist, sind kleinwüchsig. Die Forscher nannten das Cytohesin denn auch "Steppke". "Der Größeneffekt zeigte uns, dass 'Steppke' eine Schlüsselrolle im Insulinstoffwechsel spielen könnte - eine völlig neue Funktion für Cytohesine", sagt Hoch.

Neue Medikamente gegen Diabetes

Wie groß Pflanzen oder Tiere maximal werden können, ist in ihren Genen festgeschrieben. Doch ob sie dieses Potenzial ausschöpfen, wird durch eine Reihe weiterer Faktoren beeinflusst. Einer davon ist das Insulin. Säugetiere schütten dieses Hormon nach dem Essen als Reaktion auf den steigenden Blutzuckerspiegel aus. Über eine komplizierte Signalkette sorgt es dafür, dass Muskeln und Organe Blutzucker aufnehmen. Aber nicht nur das: Die Insulin-Signalkaskade entscheidet während des Wachstums auch über Größe und Zahl der Körperzellen. "Steppke" übernimmt in dieser Signalkaskade augenscheinlich eine Schlüsselfunktion. "Taufliegen-Larven werden in den ersten drei Tagen nach dem Schlüpfen 200mal schwerer", erläutert Hoch. "Wenn bei ihnen das Steppke-Gen mutiert ist, wachsen sie deutlich langsamer." Eine Reihe weiterer Beobachtungen stützen die These, dass "Steppke" für den Insulinstoffwechsel von Drosophila extrem wichtig ist. Wenn es in Säugetieren ein Cytohesin mit ähnlicher Funktion gäbe, wäre das beispielsweise für die Diabetes-Forschung hoch interessant.

Parallel zu Hoch hatte Professor Dr. Michael Famulok einen Wirkstoff hergestellt, der Cytohesine hemmt, das so genannte SecinH3. "Wir haben diesen Inhibitor an Mäuse verfüttert", erläutert der Biochemiker. Die Nagetiere verfügen nicht wie Taufliegen über ein Cytohesin, sondern gleich über vier. Famulok wollte herausfinden, ob sie im Insulinstoffwechsel der Maus eine ähnliche Schlüsselrolle einnehmen wie "Steppke" in der Fliege - und wurde fündig: "Die Leberzellen der mit SecinH3 behandelten Tiere reagierten bei weitem nicht mehr so stark auf Insulin, wie sie es sollten." Mediziner kennen diesen Effekt: Eine derartige "Insulin-Resistenz" gilt als Warnsignal für einen entstehenden Typ II-Diabetes.

Allein in Deutschland leiden sechs Millionen Menschen an dieser Form der Zuckerkrankheit. Sie wird durch falsche Ernährung und Bewegungsmangel ausgelöst - Tendenz: steigend. Famulok hält nun auch neue Medikamente für möglich: "Es gibt eine Klasse von Schaltermolekülen, die von Cytohesinen aktiviert werden. Diese Aktivierung ist offenbar nötig für die Signalweiterleitung. Wenn es uns gelingt, die Schaltermoleküle mit einem geeigneten Wirkstoff zu stimulieren, könnten wir damit die Insulin-Resistenz vielleicht rückgängig machen." Bei der Suche nach einer solchen Arznei könnte eine neue Methode helfen, die Famulok im Nature-Paper beschreibt. Mit ihrer Hilfe hat seine Arbeitsgruppe auch schon den Hemmstoff SecinH3 gefunden.

Langes Leben dank Gendefekt?

Der gemeinsame Vorfahr von Taufliege und Maus lebte vor mindestens 900 Millionen Jahren. Dennoch sind sich "Steppke" und das entsprechende Maus-Cytohesin so ähnlich, dass SecinH3 gegen beide wirkt. "Wir haben den Hemmstoff an unsere Fliegenlarven verfüttert", erklärt Hoch. "Sie entwickelten sich dann genauso, als wäre ihr 'Steppke'-Gen defekt."

Die Erbanlage hat aber noch eine ganz andere Wirkung, die die Phantasie der Forscher beflügelt: Fliegen, bei denen "Steppke" defekt ist, leben deutlich länger als ihre Artgenossen. "Ein spannender Effekt", findet Hoch. "Das müssen wir unbedingt weiter untersuchen."

Zu dieser Pressemitteilung ist Footage-Material auf Mini-DV vorhanden. Bitte setzen Sie sich bei Interesse mit Frank Luerweg, 0228/73-4728, fluerweg@uni-bonn.de, in Verbindung.

Kontakt:
Professor Dr. Michael Famulok
LIMES-Zentrum der Universität Bonn
Telefon: 0228/73-1787
E-Mail: m.famulok@uni-bonn.de
Professor Dr. Michael Hoch
LIMES-Zentrum der Universität Bonn
Telefon: 0228/73-4621
E-Mail: m.hoch@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Cytohesin Gen Insulinstoffwechsel SecinH3

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE