Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirntumore können Immunsystem lahm legen - Erste Tierversuche, Blockade mit RNA-Interferenz aufzuheben

08.12.2006
Glioblastome sind außerordentlich bösartige, sehr schnellwachsende Gehirntumore. Sie schütten nicht nur Substanzen aus, um ihre Blutversorgung zu sichern, sondern auch Botenstoffe, die sie vor Angriffen des Immunsystems schützen.

Auf der Tagung Brain Tumor 2006 des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch und des Helios Klinikums Berlin-Buch berichtete Prof. Michael Weller, Ärztlicher Direktor der Abteilung Allgemeine Neurologie am Universitätsklinikum Tübingen, dass es im Tierversuch möglich ist, mit Hilfe der "RNA-Interferenz" (RNAi) das Gen für einen zentralen Vertreter dieser Botenstoffe, den Transforming Growth Factor-beta (TGF-beta), auszuschalten und damit die Blockade des Immunsystems aufzuheben.

Bei allen Mäusen mit Glioblastom, bei denen die Forscher das TGF-beta Gen ausgeschaltet hatten, wurden die Tumore vollständig abgebaut und alle Mäuse überlebten. Diese Ergebnisse könnten nach Ansicht von Prof. Weller auch den Weg für Impfungen gegen Gehirntumore öffnen, weil nur ein intaktes Immunsystem in der Lage ist, auf eine Impfung mit einer entsprechenden Immunantwort zu reagieren.

Tumore im Gehirn werden von den Zellen des Immunsystems weniger stark angegriffen, als Tumore im restlichen Körper. Grund dafür ist unter anderem die Blut-Hirn-Schranke, die das Gehirn zum Beispiel vor Krankheitserregern, die mit dem Blut transportiert werden, schützt. Das bedeutet zugleich aber auch, dass wegen dieser Barriere das Gehirn weniger gut für das Immunsystem zugänglich ist, als andere Bereiche des Körpers. Die Forschung nahm deshalb lange Zeit an, das Immunsystem sei im Gehirn nicht aktiv.

In den vergangenen Jahren konnten Wissenschaftler jedoch zunehmend auch Immunreaktionen im Gehirn nachweisen. Die Erkrankung Multiple Sklerose zum Beispiel lässt sich auf eine überschießende Immunreaktion auch im Gehirn zurückführen. Weiter konnten Wissenschaftler zeigen, dass sich Hirntumorzellen gegen Angriffe des Immunsystems wehren. Sie produzieren Botenstoffe, die das Immunsystem der Patienten hemmen. Eine Vielzahl solcher Moleküle haben Forscher bereits identifiziert, unter anderem Substanzen mit so komplizierten Namen wie Transforming Growth Factor-beta (TGF-beta), den Regeneration and Tolerance Factor (RTF) und das lösliche Oberflächen-Antigen HLA-G.

Prof. Weller arbeitet seit 1995 in Tübingen daran, den Botenstoff TGF-beta gezielt auszuschalten, damit das Immunsystem die Tumorzellen wieder erkennen und angreifen kann. In Versuchen mit Mäusen und Ratten blockierten seine Mitarbeiter das Gen für TGF-beta mit Hilfe einer Methode, die RNA-Interferenz (RNAi) genannt wird. RNA steht für Ribonukleinsäure. Es ist ein Molekül, das den in einem Gen enthaltenen Bauplan für ein Protein, der in DNA "geschrieben" ist, in die Sprache der Eiweiße (Aminosäuren) übersetzt. Die RNAi ist ein gegenläufiger RNA-Strang. Er bindet an den RNA-Strang des in dem Tumor angeschalteten TGF-beta-Gens und blockiert ihn. Dadurch verhindert die RNAi, dass der in dem Gen enthaltene Bauplan für das TGF-beta-Gen in ein Protein umgesetzt werden kann. Das Gen wird quasi stillgelegt.

Prof. Weller konnte weiter zeigen, dass bestimmte Zellen des Immunsystems, wie Lymphozyten und natürliche Killerzellen, die Tumorzellen erkennen und zerstören können. Um zu verhindern, dass der Tumor erneut ausbricht, versuchen die Forscher derzeit in einem weiteren Schritt, die Mäuse zusätzlich mit abgetöteten Tumorzellen zu impfen. "Diese Tumorzellen können sich nicht mehr teilen, sie bilden deswegen keine Gefahr für den Organismus", betont Prof. Weller. Aber auf ihrer Oberfläche tragen die abgetöteten Tumorzellen die gleichen Merkmale, wie "normale" Tumorzellen, weswegen sie das Immunsystem trotzdem stimulieren können. Erst wenn das Immunsystem nicht mehr durch TGF-beta gehemmt wird, lässt sich eine wirksame Immunantwort durch solche Impfungen hervorrufen. "Derartige Strategien sind allerdings als rein experimentell zu betrachten, da bisher nur am Tiermodell geforscht wird und die verwendeten Methoden noch nicht auf Patienten übertragbar sind", hob Prof. Weller hervor.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Botenstoff Gen Immunsystem Mäuse RNAi TGF-Beta Tumorzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie