Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der "Allen Brain Atlas" - eine molekulare Karte des Gehirns

07.12.2006
Internationales Forscherteam veröffentlicht dreidimensionalen Atlas der Genexpression im Maus-Gehirn

Welche Gene braucht unser Gehirn? Welche Hirngebiete benutzen welche Gene? Für Mäuse liegt jetzt erstmalig ein umfassender Atlas der räumlichen Expression von Genen im Gehirn vor. Er zeigt, welche genetische Information wo abgelesen wird.


Eines von vielen Zehntausend Bildern aus dem Allen Brain Atlas (ABA). Es illustriert die starke Expression des "Tyrosin-Hydroxylase"-Gens in den Neuronen der Substantia Nigra. Bei Parkinson-Patienten ist dieses Gehirnareal stark beschädigt. Dadurch fällt die Dopamin produzierende Tyrosin-Hydroxylase aus, was die für diese Krankheit typischen Symptome erzeugt. Der Bildauschnitt rechts zeigt -vergrößert- die Tyroxin-Hydroxylase-positiven Nervenzellen mit ihren charakteristischen Verästelungen. Bild: Allen Brain Atlas

Der "Allen Brain Atlas" (ABA) ist das Ergebnis eines umfangreichen Forschungsprojektes, dessen Vorarbeiten bereits in den 1990er-Jahren angestoßen wurden. Er wird von Fachleuten als ähnlich wichtig angesehen wie die Entschlüsselung des menschlichen Genoms. Der "ABA" ist weltweit über das Internet zugänglich und umfasst nicht nur ca. 20.000 Expressionsmuster, sondern zeigt diese Information auf aneinander gereihten Schnitten durch das Gehirn und erschließt damit selbst kleine Teilbereiche dieses wichtigen Organs. Der Atlas wurde nach dem Microsoft-Mitbegründer Paul Allen benannt, dessen Interesse und Großzügigkeit die Realisation des Projekts in Amerika ermöglicht hat. Die zugrunde liegende Technologie wurde von Prof. Gregor Eichele und seinem Team in der Max-Planck-Gesellschaft entwickelt. Diese Gruppe hat auch die ersten grundlegenden Ergebnisse für den Atlas produziert (Nature, Advanced Online Publication, 6. Dezember 2006).

Warum eine Karte des Gehirns und warum bei der Maus? Abgesehen von seiner Größe ist das Gehirn der Maus dem Gehirn des Menschen in vielen Dingen sehr ähnlich. Die Teilstrukturen sind identisch und selbst die Großhirnrinden der beiden Säuger weisen eine überraschend ähnliche Architektur auf. Bei beiden sind die miteinander verbundenen Nervenzellen in Schichten angeordnet. Zahlreiche Studien haben gezeigt, dass die Funktion des Gehirns auf dieser Architektur und der vielfältigen Verknüpfung der Nervenzellen über sogenannte Synapsen beruht. Ein Verdienst des ABA ist die Identifizierung zahlreicher Gene, deren Expression (Ablesen der in den Genen kodierten Information) die Schichtung der Großhirnrinde widerspiegelt. Derart detaillierte strukturelle Expressionsmuster ergab der ABA auch andernorts im Gehirn, z.B. im Hippocampus, dem Sitz des Gedächtnisses. Der ABA zeigt nun allerdings, dass die Geografie des Hippocampus und der anderen Gehirnareale viel komplexer ist als bisher vermutet.

... mehr zu:
»ABA »Atlas »Brain »Expression »Gen »Nervenzelle »Synapse

Die zur Erstellung des ABA eingesetzte Methode beruht auf der Analyse und anschließenden Kartographierung der in Nervenzellen vorliegenden Gentranskripte (mRNAs) mit markierten Sonden. Die automatisierte Technik ermöglicht den Nachweis von nur einigen wenigen mRNA Molekülen in den "Dendriten" der Nervenzellen. Diese feinen Verästelungen bilden Synapsen mit anderen Nervenzellen, die oft in weiter Entfernung liegen. Man nimmt an, dass Gehirnprozesse wie etwa das Lernen die Bildung neuer bzw. die Modifikation bestehender Synapsen bedingen. Der ABA zeigt viele Fälle auf, in denen man mRNAs in Dendriten findet, also mRNAs auf dem Weg zu oder sogar in der Nähe von Synapsen. Die Gene, die diesen mRNA-Stücken zugrunde liegen, könnten also besonders wichtig für synaptische Prozesse sein.

Generell dient ein Atlas zur Orientierung in einer komplexen Umgebung. Der ABA erfüllt diese Aufgabe in mancherlei Hinsicht. Einzelne, zum Teil sehr kleine Gehirnbereiche sind durch eine Handvoll dort exprimierter Gene genau definiert. Diese Markierungen sind von großem Nutzen bei der Untersuchung von abnormalen Gehirnen, denn man könnte mit verschiedenen Markern herausfinden, welche Gehirnregionen beeinträchtigt sind. Markergene könnten auch für gezielte Diagnostik oder Therapie eingesetzt werden, indem sie so mit anderen Stoffen kombiniert werden, dass etwa Enzyme nur an bestimmten Orten aktiv werden.

Diese wenigen Beispiele illustrieren den Nutzen des ABA für die zukünftige neurobiologische und medizinische Forschung. Aber lassen sich aus dem Atlas auch bereits jetzt Erkenntnisse über die Funktion von Genen im erwachsenen Gehirn ableiten? Es ist ja unumstritten, dass eine fein abgestimmte raumzeitliche Expression von Genen der Konstruktion des Gehirns zugrunde liegt - Gene daher eine fundamentale Aufgabe bei der Gehirnentwicklung haben. Eine derart herausragende Steuerungsfunktion ist für das ausgewachsene Gehirn aber nur eingeschränkt nachgewiesen. Zum Beispiel benötigen Nervenzellen viel Energie, daher sind konsequenterweise auch die Gene von Stoffwechsel-Eiweißen im Gehirn exprimiert. Der ABA zeigt aber nun, dass auch viele Gene im Gehirn exprimiert sind, die Schaltfunktionen haben. Es wird daher eine äußerst spannende Aufgabe sein herauszufinden, welchen Vorgang im Gehirn diese Gene genau regulieren. Ein Beispiel ist die Tag-und-Nacht-Rhythmik, die von einem genetischen Netzwerk gesteuert wird. Der ABA hat zahlreiche neue Gene identifiziert, die diesem Netzwerk angehören. Aber der ABA hat auch das Potenzial neue Schaltgene zu entdecken, die zum Beispiel Kognition und Verhalten regulieren.

Etwa 40 Millionen Euro hat der Allen Brain Atlas gekostet und ca. 100 Wissenschaftler und Techniker haben über vier Jahre daran gearbeitet. Wie geht es weiter? Wie wird sich der ABA entwickeln? Analog zu den ersten Veröffentlichungen der menschlichen Genomsequenzen - sie wurden als "Entwürfe" vorgestellt - gilt es die Karten des ABA weiter zu verfeinern. Oft kodieren Gene mehrere leicht unterschiedliche mRNAs; diese Alternativen sind im ABA nur beschränkt dokumentiert. Der ABA besteht aus Zehntausenden von Bildern, die man auf der Website des Atlas nach Gen-Namen durchsuchen kann. Von großem Nutzen wäre eine weitere Suchmethode, mit der man Gene auch nach dem Expressionsort im Gehirn suchen könnte. Ein weiteres Projekt der Zukunft wird die Ausweitung der Methode auf andere Gehirne sein. Ratten spielen in der medizinischen Grundlagenforschung eine besonders wichtige Rolle und kürzlich wurde auch ihr Genom entschlüsselt. Das ruft geradezu danach, auch einen molekularen Atlas des Rattenhirns zu erstellen. Nachdem der ABA - mit deutschen Ideen - in den USA erstellt wurde, könnte ein solches Projekt vielleicht wieder in Deutschland oder zumindest Europa realisiert werden. Das Team von Prof. Gregor Eichele steht zur Unterstützung bereit.

Originalveröffentlichung:

Ed S. Lein, Michael J. Hawrylycz, Nancy Ao, Mikael Ayres, Amy Bensinger, Amy Bernard, Andrew F. Boe, Mark S. Boguski, Kevin S. Brockway, Emi J. Byrnes, Lin Chen, Li Chen, Tsuey-Ming Chen, Mei Chi Chin, Jimmy Chong, Brian E. Crook, Aneta Czaplinska, Chinh N. Dang, Suvro Datta, Nick R. Dee, Aimee L. Desaki, Tsega Desta, Ellen Diep, Tim A. Dolbeare, Matthew J. Donelan, Hong-Wei Dong, Jennifer G. Dougherty, Ben J. Duncan, Amanda J. Ebbert, Gregor Eichele, Lili K. Estin, Casey Faber, Benjamin A. Facer, Rick Fields, Shanna R. Fischer, Tim P. Fliss, Cliff Frensley, Sabrina N. Gates, Katie J. Glattfelder, Kevin R. Halverson, Matthew R. Hart, John G. Hohmann, Maureen P. Howell, Darren P. Jeung, Rebecca A. Johnson, Patrick T. Karr, Reena Kawal, Jolene M. Kidney, Rachel H. Knapik, Chihchau L. Kuan, James H. Lake, Annabel R. Laramee, Kirk D. Larsen, Christopher Lau, Tracy A. Lemon, Agnes J. Liang, Ying Liu, Lon T. Luong, Jesse Michaels, Judith J. Morgan, Rebecca J. Morgan, Marty T. Mortrud, Nerick F. Mosqueda, Lydia L. Ng, Randy Ng, Geralyn J. Orta, Caroline C. Overly, Tu H. Pak, Sheana E. Parry, Sayan D. Pathak, Owen C. Pearson, Ralph B. Puchalski, Zackery L. Riley, Hannah R. Rockett, Stephen A. Rowland, Joshua J. Royall, Marcos J. Ruiz, Nadia R. Sarno, Katherine Schaffnit, Nadiya V. Shapovalova, Taz Sivisay, Clifford R. Slaughterbeck, Simon C. Smith, Kimberly A. Smith, Bryan I. Smith, Andy J. Sodt, Nick N. Stewart, Kenda-Ruth Stumpf, Susan M. Sunkin, Madhavi Sutram, Angelene Tam, Carey D. Teemer, Christina Thaller, Carol L. Thompson, Lee R. Varnam, Axel Visel, Ray M. Whitlock, Paul E. Wohnoutka, Crissa K. Wolkey, Victoria Y. Wong, Matthew Wood, Murat B. Yaylaoglu, Rob C. Young, Brian L. Youngstrom, Xu Feng Yuan, Bin Zhang, Theresa A. Zwingman & Allan R. Jones:
Genome-Wide Atlas of Gene Expression in the Adult Mouse Brain
Nature, Advanced Online Publication, 6 December 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: ABA Atlas Brain Expression Gen Nervenzelle Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz