Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zink am Dimmer des Nervensystems

29.11.2006
Max-Planck-Forscher aus Frankfurt ergründen die Rolle von Zink im Gehirn

Depressionen, Aggressivität, Angstzustände - es hat schwerwiegende Folgen, wenn Zink im Gehirn fehlt. Obwohl das seit 50 Jahren bekannt ist, klärten Wissenschaftler des Max-Planck-Instituts für Hirnforschung in Frankfurt erst jetzt auf, was Zink genau im Gehirn bewirkt. Demnach tragen Zink-Ionen entscheidend dazu bei, Nervensignale an den Synapsen zu regulieren. Sie sorgen so dafür, dass der Körper Reflexe oder Befehle des Gehirns richtig verarbeitet. Wie körpereigene Metall-Ionen in die Arbeit der Nervenzellen eingreifen, ist bislang weitgehend unerforscht. Die Frankfurter Forscher leisten mit ihren Untersuchungen einen Beitrag, diese Prozesse aufzuklären (Neuron, online: 22. November 2006).


Zink verstärkt die Glyzinrezeptorantwort. Ist Zink an den Rezeptor gebunden, strömen Chlorid-Ionen vermehrt ein (linkes Bild, rechter Ionenkanal). Dies verstärkt die Wirkung von Glyzin innerhalb neuronaler Schaltkreise. Die Mutation der Zinkbindungsstelle am Glyzinrezeptor verhindert, dass Zink den Chlorideinstrom verstärkt (rechtes Bild), und verursacht Symptome ähnlich der menschlichen Schreckerkrankung Hyperekplexie. Bild: Max-Planck-Institut für Hirnforschung

Hirnforscher klären heute die Struktur von Ionenkanälen aus zehntausenden Atomen auf und beschreiben ausgedehnte neuronale Netzwerke. Wie wichtig aber die kleinen Zink-Ionen für die Hirnphysiologie sind, haben die Wissenschaftler des Max-Planck-Instituts für Hirnforschung erst jetzt herausgefunden - obwohl seit 50 Jahren bekannt ist, dass sie in bestimmten Hirnregionen stark angereichert sind, und die Pharmaindustrie Zink schon lange in Anti-Alterungspräparaten einsetzt. Nach den Erkenntnissen der Forscher helfen Zink-Ionen, die Erregung von Neuronen zu hemmen, indem sie Glyzin-Rezeptoren an den Synapsen, den Verknüpfungsstellen der Nervenzellen, regulieren.

Um Signale weiterzuleiten, schütten Nervenzellen Botenstoffe (Neurotransmitter) aus, die an Rezeptoren nachgeschalteter Empfängerzellen andocken. Zahlreiche Substanzen regulieren die Aktivität dieser Rezeptoren und dämpfen oder verstärken damit Nervensignale - wie ein Dimmer. Die Frankfurter Forscher untersuchten speziell den Glyzin-Rezeptor, der im Rückenmark und der Netzhaut vorkommt und einen Kanal für Chlorid-Ionen steuert. Um ein Signal zu dämpfen, setzt das Senderneuron den Botenstoff Glyzin an der Synapse frei. Das Glyzin bindet am Glyzin-Rezeptor der Empfängerzelle. Daraufhin öffnet sich der Chlorid-Ionenkanal und erhöht dadurch die Konzentration von Chlorid-Ionen im Empfängerneuron. Dies hemmt dann die Aktivität des Empfängerneurons. So sorgen Glyzin und der Glyzinrezeptor dafür, dass der Körper auf Reflexe oder Befehle des Gehirns nicht überreagiert.

... mehr zu:
»Glyzin »Glyzin-Rezeptor »Rezeptor »Synapse

Schon vor ein paar Jahren hatten die Wissenschaftler entdeckt, dass Zink mit dem Glyzinrezeptor wechselwirkt. Mit Hilfe von Strukturmodellen und Mutationsanalysen konnten die Hirnforscher nun auch die zinkbindende Stelle auf dem Rezeptor lokalisieren. Anschließend erzeugten sie gezielt Punktmutationen in einem Gen des Glyzin-Rezeptors bei Mäusen, so dass die Rezeptoren kein Zink mehr binden. So konnten sie an der lebenden Maus beobachteten, was passiert, wenn Zink nicht in das Geschehen an den hemmenden Synapsen eingreift.

Die Auswirkungen waren beträchtlich. Neben eingeschränkten Reflexen neigten die Mäuse zu Krämpfen und waren erheblich schreckhafter. Diese Symptome treten auch bei der seltenen genetischen Krankheit Hyperekplexie auf, die aufgrund von Mutationen in Glyzinrezeptor-Genen auftritt. Ähnliche Effekte ruft auch das starke Gift Strychnin aus der Brechnuss hervor, welches die Glyzinrezeptoren blockiert. Daraus schlossen die Forscher, dass Zink für die physiologische Funktion von Glyzinrezeptoren essentiell ist. Kann es nicht an Glyzinrezeptoren binden, strömen weniger Chlorid-Ionen durch den Kanal und die hemmende Wirkung des Glyzins wird geschwächt.

Die Diskussion um Zink im Gehirn dauert schon lange an. Die neuen Ergebnisse stehen im Kontrast zu denen anderer Arbeitsgruppen, die vor kurzem das vielfältige Metall zumindest im Gehirn als arbeitsscheuen "Herumstreuner" entlarvt haben wollten. "Die früheren Untersuchungen krankten aber auch an einer breiten Palette schlecht abschätzbarer Nebenwirkungen", sagt Bodo Laube, einer der beteiligten Wissenschaftler, "Wir achteten besonders darauf, die Fehlerquellen vorhergehender Untersuchungen zu vermeiden, und stellten in umfangreichen Tests sicher, dass die Symptome der Mäuse nur auf das fehlende Zink zurückgingen."

Während Neurologen relativ genau wissen, wie Psychopharmaka an unterschiedlichen Rezeptoren wirken, ist noch weit weniger gehend unbekannt, wie und welche körpereigenen Stoffe die Rezeptoraktivität im Gehirnen wie regulieren. Umso bedeutender sind also die neuen Erkenntnisse über die entscheidende Rolle des Zinks in diesem Prozess.

Originalveröffentlichung:

Klaus Hirzel, Ulrike Müller, Tobias Latal, Swen Hülsmann, Joanna Grudzinska, Mathias W. Seeliger, Heinrich Betz, and Bodo Laube
Hyperekplexia Phenotype of Glycine Receptor α1 Subunit Mutant Mice Identifies Zn2+ as an Essential Endogenous Modulator of Glycinergic Neurotransmission

Neuron, online: 22. November 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Glyzin Glyzin-Rezeptor Rezeptor Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Maßgeschneiderte Nanopartikel gegen Krebs gesucht
29.06.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Elektrisch leitende Hülle für Bakterien
29.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie