Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Nachweisverfahren für Antibiotika-Resistenz: Mutationen geben Leuchtsignale

27.11.2006
Der Austausch eines einzigen Gen-Bausteins im Erbgut des Tuberkulose-Erregers verursacht Resistenz gegen das Antibiotikum Rifampicin.

Wissenschaftler aus dem Deutschen Krebsforschungszentrum und den Universitäten Heidelberg und Bielefeld entwickelten ein hochempfindliches Testverfahren, das diese Genveränderung auf der Ebene des Einzelmoleküls nachweist und damit Auskunft über den Resistenzstatus eines Infizierten gibt.

Vielen Antibiotika-Resistenzen liegen spezifische Mutationen im Erbgut der Erreger zugrunde. Bei bedrohlichen Infektionen ist es für den Patienten überlebenswichtig, schnell zu klären, welches Medikament ihm hilft. Die gängigen Methoden zum Resistenznachweis nehmen aber gerade bei Mikroorganismen wie den Tuberkuloseerregern, die in der Kulturschale nur sehr langsam wachsen, zuviel Zeit in Anspruch.

Wissenschaftler um Dr. Jens-Peter Knemeyer aus der Abteilung Funktionelle Genomanalyse im Deutschen Krebsforschungszentrum kombinieren ein Hybridisierungsverfahren, bei dem sich kleine DNA-Sonden hochspezifisch ausschließlich an die mutierte Gensequenz binden, mit der Technik der konfokalen Mikroskopie: Die DNA-Sonden sind mit einem Fluoreszenzfarbstoff gekoppelt, der unter Laserlicht aufleuchtet. Dieses Leuchtsignal erscheint jedoch nur dann, wenn die Sonde sich an ihre Zielsequenz auf dem Bakterienerbgut anlagert. "Ungebundene" Sondenmoleküle geben kein Signal ab. Jeder dieser Mini-Lichtblitze, die entstehen, wenn sich Sonde und Zielmolekül aneinander binden, weist ein einziges mutiertes DNA-Molekül nach.

Durch die Messung der Dauer und der Abklingzeiten der Lichtblitze unterscheiden die Forscher ein echtes Messergebnis vom allgegenwärtigen Hintergrundleuchten: Aufgrund chemischer Eigenschaften der beteiligten Moleküle klingt die spontane Fluoreszenz wesentlich schneller ab als das Signal der Farbstoff gekoppelten Sonde.

Der Nachweis der Resistenz verursachenden Punktmutation im Erbgut des Tuberkelbazillus ist nur eine von zahlreichen Einsatzmöglichkeiten der so genannten Einzelmolekül-Fluoreszenz-Spektroskopie. Das Verfahren bietet einen großen Vorteil: Statt, wie beim Nachweis der Antibiotika-Resistenz, die Lichtblitze in einer Probenlösung zu erfassen, kann die Untersuchungsmethode auch in lebenden Zellen durchgeführt werden. Dr. Jörg Hoheisel, Leiter der Abteilung Funktionelle Genomanalyse im Deutschen Krebsforschungszentrum, erklärt: "Ebenso gut wie DNA-Mutationen können wir mit geeigneten Sonden alle Moleküle in einer Zelle nachweisen, die kennzeichnend für eine bestimmte Erkrankung sind. Da einzelne Moleküle nachgewiesen werden, ist der Test hochempfindlich - trotzdem aber zuverlässig, weil wir über die Abklingzeiten eine interne Kontrolle haben."

Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nicole Marmé, Achim Friedrich, Matthias Müller, Oliver Nolte, Jürgen Wolfrum, Jörg D. Hoheisel, Markus Sauer und Jens-Peter Knemeyer, Nucleic Acids Research Band 34 2006. DOI: 10.1093/nar/gkl495

Dr. Julia Rautenstrauch | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Berichte zu: Antibiotika-Resistenz Erbgut Leuchtsignal Molekül Mutation Sonde

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie