Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur von synaptischen Vesikeln beschrieben

21.11.2006
Mit quantitativen Analysen unter anderem der Proteindichte von synaptischen Vesikeln hat jetzt eine internationale Forschungsgruppe deren molekulare Struktur erforscht.

In einer langen Serie von Experimenten haben 22 Wissenschaftler um Reinhard Jahn am Max-Planck-Institut für biophysikalische Chemie über viele Jahre hinweg Daten gesammelt und analysiert. Die Ergebnisse, die jetzt in der Fachzeitschrift "Cell" veröffentlich wurden, geben einen Einblick in den Aufbau dieser kleinen, aber sehr wichtigen Bauteile von biologischen Zellen. (Cell, 16. November 2006).

Wenn Nervenzellen miteinander kommunizieren und Signale weiterleiten, geschieht dies über kleinste Schaltstellen, die sog. Synapsen. Dabei werden durch die Signale in der einen Zelle Botenstoffe ("Neurotransmitter") freigesetzt, die in der nachgeschalteten Zelle erneut ein Signal auslösen können. Durch die Aufschaltung verschiedener Signale und die Kombination von erregenden oder hemmenden Neurotransmittern werden die Signale an jeder Schaltstelle verstärkt oder abgeschwächt, und diese "Verarbeitung" in vielen Schritten bildet die Grundlage für die enormen komplexen Leistungen unseres Gehirns.

Obwohl das Prinzip der synaptischen Signalübertragung seit Jahrzehnten bekannt ist, sind die zugrundeliegenden molekularen Mechanismen bis heute noch nicht vollständig aufgeklärt. Die Neurotransmitter sind in kleinen Vorratsbehältern ("Vesikeln") in der Zelle gespeichert, die sich bei Bedarf mit der Zellwand verbinden und nach außen hin öffnen und entleeren. Zahl und Verfügbarkeit der Vesikel sind für die Schaltprozesse von entscheidender Bedeutung, genauso wie die Schnelligkeit, mit der die Vesikel ihren Inhalt freigeben. Wie das im einzelnen geschieht, ist nicht bekannt, aber man hat in den letzten Jahren entscheidende molekulare Schritte in diesem Ablaufs identifiziert. Eine besondere Rolle spielen dabei sog. "SNARE"-Proteine, die dafür sorgen, dass sich die Vesikel an die Zellwand anlagern, dass sich Vesikelhülle und Zellhülle verbinden und sich schließlich auch nach außen hin öffnen.

... mehr zu:
»Cell »Membran »Organelle »Protein »Vesikel »Vesikeln »Zelle

Alle diese Schritte sind nicht direkt sichtbar; die beteiligten Strukturen sind zu klein, als dass man sie mit herkömmlichen Lichtmikroskopen betrachten könnte. Um trotzdem Licht in das Dunkel zu bringen, hat Prof. Reinhard Jahn seit vielen Jahren die quantitative Analyse der molekularen Bestandteile von Vesikeln vorangetrieben, um daraus Rückschlüsse auf deren Aufbau ziehen zu können. Das ist jetzt gelungen; die jahrzehntelange Geduld hat sich ausgezahlt. Aus vielen verschiedenen Untersuchungen mit über 20 beteiligten Wissenschaftlerinnen und Wissenschaftlern weltweit ergibt sich ein Bild, wie Vesikel aufgebaut sind, welche Proteine in welcher Menge auf ihrer Oberfläche gelagert sind und wie sich die SNARE-Proteine dazwischen verteilen.

Das Ergebnis ist faszinierend. Dies sei das erste atomare Modell einer zellulären Struktur (Organelle) überhaupt, betont Prof. Thomas C. Südhof von der University of Texas. Überraschend war vor allem die unerwartet hohe Dichte von Proteinen auf der Vesikel-Oberfläche. "Bisher hat man sich Membranen als glatte Lipid-Doppelschichten vorgestellt, in denen Proteine umherschwimmen wie Eisberge im Meer," kommentierte Reinhard Jahn seine Befunde. "Tatsächlich ist aber ein Viertel der Membran von Bereichen mit Vesikelproteinen ausgefüllt, die durch die Membran hindurchreichen. Und die Oberfläche ist nahezu vollständig mit Proteinen bedeckt." Das sind nicht nur SNARE-Proteine, die in großer Zahl vorkommen, sondern auch viele Varianten mit ganz anderen Funktionen und möglichen Aufgaben.

Die Experimente haben neue Fragen aufgeworfen, die Prof. Jahn jetzt angehen will. Eine davon ist: Wie unterscheiden sich Vesikel mit verschiedenen, erregenden oder hemmenden Neurotransmittern? Der Erfolg der bisherigen Messungen lässt hoffen, dass auch diese Fragen irgendwann einmal beantwortet werden können - spätestens in weiteren 15 Jahren. [hcn]

Originalveröffentlichung:
Shigeo Takamori et al.: Molecular Anatomy of a Trafficking Organelle, Cell 127, 831-846 (2006).

Preview dazu: Thomas C. Südhof: Synaptic Vesicles: An Organelle Comes of Age, Cell 127, 671-673 (2006).

Weitere Informationen:
Prof. Dr. Reinhard Jahn, Max-Planck-Institut für biophysikalische Chemie, Abteilung Neurobiologie, Am Fassberg 11, 37077 Göttingen, Tel: 0551 201-1634, Fax: -1639, eMail: rjahn@gwdg.de

Dr. Christoph Nothdurft | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/jahn/ -
http://www.mpibpc.mpg.de/PR/2006/06_24/

Weitere Berichte zu: Cell Membran Organelle Protein Vesikel Vesikeln Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise