Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur von synaptischen Vesikeln beschrieben

21.11.2006
Mit quantitativen Analysen unter anderem der Proteindichte von synaptischen Vesikeln hat jetzt eine internationale Forschungsgruppe deren molekulare Struktur erforscht.

In einer langen Serie von Experimenten haben 22 Wissenschaftler um Reinhard Jahn am Max-Planck-Institut für biophysikalische Chemie über viele Jahre hinweg Daten gesammelt und analysiert. Die Ergebnisse, die jetzt in der Fachzeitschrift "Cell" veröffentlich wurden, geben einen Einblick in den Aufbau dieser kleinen, aber sehr wichtigen Bauteile von biologischen Zellen. (Cell, 16. November 2006).

Wenn Nervenzellen miteinander kommunizieren und Signale weiterleiten, geschieht dies über kleinste Schaltstellen, die sog. Synapsen. Dabei werden durch die Signale in der einen Zelle Botenstoffe ("Neurotransmitter") freigesetzt, die in der nachgeschalteten Zelle erneut ein Signal auslösen können. Durch die Aufschaltung verschiedener Signale und die Kombination von erregenden oder hemmenden Neurotransmittern werden die Signale an jeder Schaltstelle verstärkt oder abgeschwächt, und diese "Verarbeitung" in vielen Schritten bildet die Grundlage für die enormen komplexen Leistungen unseres Gehirns.

Obwohl das Prinzip der synaptischen Signalübertragung seit Jahrzehnten bekannt ist, sind die zugrundeliegenden molekularen Mechanismen bis heute noch nicht vollständig aufgeklärt. Die Neurotransmitter sind in kleinen Vorratsbehältern ("Vesikeln") in der Zelle gespeichert, die sich bei Bedarf mit der Zellwand verbinden und nach außen hin öffnen und entleeren. Zahl und Verfügbarkeit der Vesikel sind für die Schaltprozesse von entscheidender Bedeutung, genauso wie die Schnelligkeit, mit der die Vesikel ihren Inhalt freigeben. Wie das im einzelnen geschieht, ist nicht bekannt, aber man hat in den letzten Jahren entscheidende molekulare Schritte in diesem Ablaufs identifiziert. Eine besondere Rolle spielen dabei sog. "SNARE"-Proteine, die dafür sorgen, dass sich die Vesikel an die Zellwand anlagern, dass sich Vesikelhülle und Zellhülle verbinden und sich schließlich auch nach außen hin öffnen.

... mehr zu:
»Cell »Membran »Organelle »Protein »Vesikel »Vesikeln »Zelle

Alle diese Schritte sind nicht direkt sichtbar; die beteiligten Strukturen sind zu klein, als dass man sie mit herkömmlichen Lichtmikroskopen betrachten könnte. Um trotzdem Licht in das Dunkel zu bringen, hat Prof. Reinhard Jahn seit vielen Jahren die quantitative Analyse der molekularen Bestandteile von Vesikeln vorangetrieben, um daraus Rückschlüsse auf deren Aufbau ziehen zu können. Das ist jetzt gelungen; die jahrzehntelange Geduld hat sich ausgezahlt. Aus vielen verschiedenen Untersuchungen mit über 20 beteiligten Wissenschaftlerinnen und Wissenschaftlern weltweit ergibt sich ein Bild, wie Vesikel aufgebaut sind, welche Proteine in welcher Menge auf ihrer Oberfläche gelagert sind und wie sich die SNARE-Proteine dazwischen verteilen.

Das Ergebnis ist faszinierend. Dies sei das erste atomare Modell einer zellulären Struktur (Organelle) überhaupt, betont Prof. Thomas C. Südhof von der University of Texas. Überraschend war vor allem die unerwartet hohe Dichte von Proteinen auf der Vesikel-Oberfläche. "Bisher hat man sich Membranen als glatte Lipid-Doppelschichten vorgestellt, in denen Proteine umherschwimmen wie Eisberge im Meer," kommentierte Reinhard Jahn seine Befunde. "Tatsächlich ist aber ein Viertel der Membran von Bereichen mit Vesikelproteinen ausgefüllt, die durch die Membran hindurchreichen. Und die Oberfläche ist nahezu vollständig mit Proteinen bedeckt." Das sind nicht nur SNARE-Proteine, die in großer Zahl vorkommen, sondern auch viele Varianten mit ganz anderen Funktionen und möglichen Aufgaben.

Die Experimente haben neue Fragen aufgeworfen, die Prof. Jahn jetzt angehen will. Eine davon ist: Wie unterscheiden sich Vesikel mit verschiedenen, erregenden oder hemmenden Neurotransmittern? Der Erfolg der bisherigen Messungen lässt hoffen, dass auch diese Fragen irgendwann einmal beantwortet werden können - spätestens in weiteren 15 Jahren. [hcn]

Originalveröffentlichung:
Shigeo Takamori et al.: Molecular Anatomy of a Trafficking Organelle, Cell 127, 831-846 (2006).

Preview dazu: Thomas C. Südhof: Synaptic Vesicles: An Organelle Comes of Age, Cell 127, 671-673 (2006).

Weitere Informationen:
Prof. Dr. Reinhard Jahn, Max-Planck-Institut für biophysikalische Chemie, Abteilung Neurobiologie, Am Fassberg 11, 37077 Göttingen, Tel: 0551 201-1634, Fax: -1639, eMail: rjahn@gwdg.de

Dr. Christoph Nothdurft | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/jahn/ -
http://www.mpibpc.mpg.de/PR/2006/06_24/

Weitere Berichte zu: Cell Membran Organelle Protein Vesikel Vesikeln Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive