Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur von synaptischen Vesikeln beschrieben

21.11.2006
Mit quantitativen Analysen unter anderem der Proteindichte von synaptischen Vesikeln hat jetzt eine internationale Forschungsgruppe deren molekulare Struktur erforscht.

In einer langen Serie von Experimenten haben 22 Wissenschaftler um Reinhard Jahn am Max-Planck-Institut für biophysikalische Chemie über viele Jahre hinweg Daten gesammelt und analysiert. Die Ergebnisse, die jetzt in der Fachzeitschrift "Cell" veröffentlich wurden, geben einen Einblick in den Aufbau dieser kleinen, aber sehr wichtigen Bauteile von biologischen Zellen. (Cell, 16. November 2006).

Wenn Nervenzellen miteinander kommunizieren und Signale weiterleiten, geschieht dies über kleinste Schaltstellen, die sog. Synapsen. Dabei werden durch die Signale in der einen Zelle Botenstoffe ("Neurotransmitter") freigesetzt, die in der nachgeschalteten Zelle erneut ein Signal auslösen können. Durch die Aufschaltung verschiedener Signale und die Kombination von erregenden oder hemmenden Neurotransmittern werden die Signale an jeder Schaltstelle verstärkt oder abgeschwächt, und diese "Verarbeitung" in vielen Schritten bildet die Grundlage für die enormen komplexen Leistungen unseres Gehirns.

Obwohl das Prinzip der synaptischen Signalübertragung seit Jahrzehnten bekannt ist, sind die zugrundeliegenden molekularen Mechanismen bis heute noch nicht vollständig aufgeklärt. Die Neurotransmitter sind in kleinen Vorratsbehältern ("Vesikeln") in der Zelle gespeichert, die sich bei Bedarf mit der Zellwand verbinden und nach außen hin öffnen und entleeren. Zahl und Verfügbarkeit der Vesikel sind für die Schaltprozesse von entscheidender Bedeutung, genauso wie die Schnelligkeit, mit der die Vesikel ihren Inhalt freigeben. Wie das im einzelnen geschieht, ist nicht bekannt, aber man hat in den letzten Jahren entscheidende molekulare Schritte in diesem Ablaufs identifiziert. Eine besondere Rolle spielen dabei sog. "SNARE"-Proteine, die dafür sorgen, dass sich die Vesikel an die Zellwand anlagern, dass sich Vesikelhülle und Zellhülle verbinden und sich schließlich auch nach außen hin öffnen.

... mehr zu:
»Cell »Membran »Organelle »Protein »Vesikel »Vesikeln »Zelle

Alle diese Schritte sind nicht direkt sichtbar; die beteiligten Strukturen sind zu klein, als dass man sie mit herkömmlichen Lichtmikroskopen betrachten könnte. Um trotzdem Licht in das Dunkel zu bringen, hat Prof. Reinhard Jahn seit vielen Jahren die quantitative Analyse der molekularen Bestandteile von Vesikeln vorangetrieben, um daraus Rückschlüsse auf deren Aufbau ziehen zu können. Das ist jetzt gelungen; die jahrzehntelange Geduld hat sich ausgezahlt. Aus vielen verschiedenen Untersuchungen mit über 20 beteiligten Wissenschaftlerinnen und Wissenschaftlern weltweit ergibt sich ein Bild, wie Vesikel aufgebaut sind, welche Proteine in welcher Menge auf ihrer Oberfläche gelagert sind und wie sich die SNARE-Proteine dazwischen verteilen.

Das Ergebnis ist faszinierend. Dies sei das erste atomare Modell einer zellulären Struktur (Organelle) überhaupt, betont Prof. Thomas C. Südhof von der University of Texas. Überraschend war vor allem die unerwartet hohe Dichte von Proteinen auf der Vesikel-Oberfläche. "Bisher hat man sich Membranen als glatte Lipid-Doppelschichten vorgestellt, in denen Proteine umherschwimmen wie Eisberge im Meer," kommentierte Reinhard Jahn seine Befunde. "Tatsächlich ist aber ein Viertel der Membran von Bereichen mit Vesikelproteinen ausgefüllt, die durch die Membran hindurchreichen. Und die Oberfläche ist nahezu vollständig mit Proteinen bedeckt." Das sind nicht nur SNARE-Proteine, die in großer Zahl vorkommen, sondern auch viele Varianten mit ganz anderen Funktionen und möglichen Aufgaben.

Die Experimente haben neue Fragen aufgeworfen, die Prof. Jahn jetzt angehen will. Eine davon ist: Wie unterscheiden sich Vesikel mit verschiedenen, erregenden oder hemmenden Neurotransmittern? Der Erfolg der bisherigen Messungen lässt hoffen, dass auch diese Fragen irgendwann einmal beantwortet werden können - spätestens in weiteren 15 Jahren. [hcn]

Originalveröffentlichung:
Shigeo Takamori et al.: Molecular Anatomy of a Trafficking Organelle, Cell 127, 831-846 (2006).

Preview dazu: Thomas C. Südhof: Synaptic Vesicles: An Organelle Comes of Age, Cell 127, 671-673 (2006).

Weitere Informationen:
Prof. Dr. Reinhard Jahn, Max-Planck-Institut für biophysikalische Chemie, Abteilung Neurobiologie, Am Fassberg 11, 37077 Göttingen, Tel: 0551 201-1634, Fax: -1639, eMail: rjahn@gwdg.de

Dr. Christoph Nothdurft | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/jahn/ -
http://www.mpibpc.mpg.de/PR/2006/06_24/

Weitere Berichte zu: Cell Membran Organelle Protein Vesikel Vesikeln Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie