Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transport-Eiweiss versteckt sich in den Zellen

14.11.2006
Wissenschaftler der Medizinischen Universitätsklinik Heidelberg widerlegen Lehrbuchmodell zur Fettaufnahme im Darm / Veröffentlichung im "Journal of Cell Science"

Wissenschaftler der Medizinischen Universitätsklinik Heidelberg haben entdeckt, dass die Aufnahme von Nahrungsfetten im Darm völlig anders funktioniert, als bisher angenommen und in Lehrbüchern verbreitet wurde: Ein für die Fettaufnahme entscheidendes Protein, das "Fatty Acid Transport Protein 4" (FATP4), befindet sich nicht auf der Oberfläche der Darmschleimhautzellen und kann deshalb auch keine Fettsäuren ins Zellinnere transportieren. FATP4 befindet sich vielmehr in den Zellen und sorgt als Enzym dafür, dass die Fettsäuren für eine Weitergabe an den Blutkreislauf aufbereitet werden.

Die bahnbrechende Arbeit der Heidelberger Wissenschaftler aus der Abteilung Gastroenterologie der Medizinischen Universitätsklinik Heidelberg (Ärztlicher Direktor: Professor Dr. Wolfgang Stremmel) hat maßgeblichen Einfluss auf die Entwicklung neuer Behandlungskonzepte, bei denen eine übermäßige Aufnahme von Nahrungsfetten verhindert werden soll, etwa bei Fettsucht und Diabetes. Die Ergebnisse sind jetzt online in der renommierten Zeitschrift "Journal of Cell Science" veröffentlicht worden.

"Nach den Ergebnissen unserer Arbeit müssen nun die Lehrbücher umgeschrieben werden", erklärt Privatdozent Dr. Joachim Füllekrug, der die Arbeitsgruppe Molekulare Zellbiologie in der Heidelberger Klinik leitet. Dass sich das FATP4 Transportprotein auf der Oberfläche der Zelle befindet, hatte 1999 eine amerikanische Arbeitsgruppe in der Zeitschrift "Molecular Cell" veröffentlicht.

... mehr zu:
»Cell »Darm »FATP4 »Fettaufnahme »Protein

Hochauflösende Mikroskopie lieferte den Beweis

Wissenschaftliche Neugier, wie der molekulare Mechanismus der Fettsäureaufnahme im Darm funktioniert, war der Ausgangspunkt der Heidelberger Arbeiten. Die entscheidenden Hinweise für die Funktion des FATP4 Proteins lieferten hochauflösende mikroskopische Aufnahmen, mit denen die Wissenschaftler die Fettaufnahme von einzelnen Zellen untersuchen konnten. Wesentliche Beiträge zu diesem überraschenden Ergebnis leistete die Nachwuchswissenschaftlerin Katrin Milger im Rahmen ihrer medizinischen Dissertation.

Die Heidelberger Wissenschaftler untersuchten zwar überwiegend FATP im Darm, gehen aber davon aus, dass sich die Proteine auch in anderen Organen und Gewebe wie der Leber und dem Fettgewebe innerhalb der Zellen und nicht auf ihrer Oberfläche befinden. "Dies bedeutet, dass hier ein Umdenken einsetzen muss. Der Fettgehalt im Blut wird also anders beeinflusst, als man sich bislang vorgestellt hat," sagt Dr. Füllekrug. Auch diese Erkenntnis aus der Grundlagenforschung hat weitreichende Folgen für die Entwicklung von neuen Medikamenten.

Literatur:

Milger, K., T. Herrmann, C. Becker, D. Gotthardt, J. Zickwolf, R. Ehehalt, P.A. Watkins, W. Stremmel, and J. Fullekrug. 2006. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci. 119 (22): 4678-4688.

Stahl, A., D.J. Hirsch, R.E. Gimeno, S. Punreddy, P. Ge, N. Watson, S. Patel, M. Kotler, A. Raimondi, L.A. Tartaglia, and H.F. Lodish. 1999. Identification of the major intestinal fatty acid transport protein. Mol Cell. 4:299-308.

(Der Originalartikel kann bei der Pressestelle des Universitätsklinikums Heidelberg unter contact@med.uni-heidelberg.de angefordert werden)

Ansprechpartner:

Privatdozent Dr. rer. nat. Joachim Füllekrug
Medizinische Universitätsklinik Heidelberg
Innere Medizin IV, AG Molekulare Zellbiologie
Im Neuenheimer Feld 345, 69120 Heidelberg
Telefon 06221 5638960
Fax 06221 565398
Email Joachim.Fuellekrug@med.uni-heidelberg.de
Information im Internet:
www.klinikum.uni-heidelberg.de/Traffic_JF.100156.0.html
jcs.biologists.org/cgi/content/abstract/119/22/4678
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: Annette_Tuffs@med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de

Weitere Berichte zu: Cell Darm FATP4 Fettaufnahme Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie