Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues von Schwamm Tethya: Oberflächenwunder mit modernem Skelett

13.11.2006
Die erste im Stuttgarter Zoologisch-Botanischen Garten Wilhelma entdeckte und nach ihm benannte Tierart, der Schwamm Tethya wilhelma, sorgt weiter für wissenschaftliche Schlagzeilen.

In zwei Veröffentlichungen in der aktuellen Ausgabe der Fachzeitschrift Zoomorphology* stellt der Zoologe Dr. Michael Nickel vom Biologischen Institut der Universität Stuttgart gemeinsam mit Dr. Felix Beckmann (Hamburg) und Dr. Eric Bullinger (Irland) die neuesten Forschungsergebnisse rund um die kleinen weißen Kugelschwämmchen vor. Zum ersten Mal gelang es, mit Hilfe von elektromagnetischen Wellen (Synchrotronstrahlung) die dreidimensionale Körperstruktur eines kompletten Schwammes aufzunehmen und in einem virtuellen Modell darzustellen.

Die Daten erlauben einen detaillierten Einblick in das komplexe Innenleben dieses Vertreters der über 600 Millionen Jahre alten Tiergruppe der Schwämme. In einem virtuellen Flug durch das Kanalsystem des Schwammes konnten neue Erkenntnisse über dessen strukturelle Konzeption gewonnen werden. Neben beeindruckenden Visualisierungen erlauben die virtuellen Daten erstmals die Vermessung des extrem verzweigen Wasserleitungssystems.

Dabei zeigte sich, dass der kleine Schwamm ein wahres Oberflächenwunder ist: "Bezogen auf das Volumen besitzt Tethya wilhelma sechsmal so viel Oberfläche wie die menschliche Lunge", erklärt Michael Nickel. Bisher wurden die Dimensionen der Oberflächen-zu-Volumen-Verhältnisse aufgrund fehlender Messmöglichkeiten stark unterschätzt. Auch das Skelett der Tethya-Schwämme barg Überraschungen. So bilden über 16.000 winzige, sternförmige Mineralpartikel eine regelrechte Sphäre auf halbem Weg zwischen Außenseite und Zentrum des kugeligen Schwammes. "Das Besondere an dieser Struktur sind die Materialeigenschaften", erläutert Michael Nickel.

Die Silikatpartikel sind in eine dicke Schicht von Kollagen eingelagert. Gleich einem Komposit-Werkstoff aus einer elastischen Matrix (Kollagen) und eingelagerten Füllerpartikeln (Silikat-Sterne) ist diese Sphäre in der Lage, hohe physikalische Belastungen dynamisch abzupuffern. Ein ähnliches Prinzip findet man bei Autoreifen. Auch in der Medizin könnten ähnliche Komposit-Werkstoffe zum Einsatz kommen, etwa in Form von gewebeverträglichen Implantaten. "Es handelt sich im Prinzip um einen Werkstoff, wie er moderner nicht sein könnte", resümiert Nickel.

Schnellster Schwamm der Welt

Solche von der bionischen Forschung inspirierten Anwendungen sind jedoch Zukunftsmusik. Einstweilen helfen die neuen Daten aus dem Synchrotron-Mikrotomographen den Wissenschaftlern, ihre Modellorganismen besser zu verstehen. Insbesondere für das Verständnis des eigentümlichen Bewegungsverhaltens von Tethya wilhelma, der als "schnellster Schwamm der Welt" gilt, sind die aktuellen Stuttgarter Forschungsarbeiten von Bedeutung: Die riesigen kontraktionsfähigen Oberflächen im Schwamm ermöglichen ein extremes Zusammenziehen des Körpers. "Und das ohne Muskelzellen", wie Nickel betont. Die räumliche Anordnung der Skelettelemente sorgt dabei während der Kontraktion für eine Verteilung der auf das Gewebe wirkenden Zugkräfte. Dadurch werden der im Zentrum liegende lebenswichtige Filtrationsapparat des Schwammes vor übermäßiger Verformung oder gar dem Kollaps bewahrt.

Für Michael Nickel ist die Forschung an Tethya wilhelma und seinen Verwandten noch längst nicht ausgereizt. Aus der Mischung von Grundlagenforschung und anwendungsorientierter Forschung erwarten die Wissenschaftler neue Ideen für biomedizinische und ingenieurwissenschaftliche Materialien. Neben Komposit-Werkstoffen sind in dieser Hinsicht vor allem auch Unterwasser-Haftstrukturen an Körperausläufern, die der Schwamm ausbildet, von Interesse. In interdisziplinären Kooperationen mit Ingenieuren, Molekular- und Systembiologen soll Tethya wilhelma deshalb auch zukünftig im Mittelpunkt stehen.

Weitere Informationen bei Dr. Michael Nickel, Biologisches Institut der Universität Stuttgart, Tel. 0711/685-65084, e-Mail: michael.nickel@bio.uni-stuttgart.de, Anfragen vom 14.11. - 4.12.2006 wegen einer Auslandsdienstreise von M. Nickel bitte zunächst per e-Mail.

* Die Beiträge erschienen in der Zeitschrift Zoomorphology, Volume 125, Heft 4, November 2006: S. 209-223 (http://dx.doi.org/10.1007/s00435-006-0021-1) und S. 225-239 (http://dx.doi.org/10.1007/s00435-006-0022-0)

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Berichte zu: Komposit-Werkstoff Oberflächenwunder Schwamm Skelett Tethya

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie