Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hungerkünstler tief im Meeresboden

13.11.2006
Internationales Forscherteam: Natürliche Radioaktivität könnte Lebensenergie für Mikroben in der Tiefen Biosphäre liefern

Ein internationales Forscherteam aus den USA und Deutschland stellt im Wissenschaftsmagazin "Science" jetzt eine Erklärung für das Leben in der Tiefen Biosphäre vor. Mit einem Bündel an neuesten Techniken aus den Bereichen Biogeochemie, Molekular- und Mikrobiologie sammelten die Wissenschaftler umfangreiche Proben im Meeresgrund. Nach intensiver Analyse haben Bo B. Jørgensen und Steven D´Hondt jetzt ein Modell veröffentlicht, mit dem sie erklären, dass Mikroorganismen möglicherweise durch die natürliche Radioaktivität tief im Meeresboden überleben können (Science, 10. November 2006).

Man schätzt heute, dass zwischen 10 und 50 Prozent aller Biomasse auf der Erde tief im Boden steckt. Das fanden Forscher um Steven D´Hondt von der University of Rhode Island, USA, und Bo B. Jørgensen vom Max-Planck-Institut für marine Mikrobiologie in Bremen bei ihren Bohrungen im Meeresboden im Rahmen des Ocean Drilling Programs bestätigt. Auf der Ausfahrt mit dem Forschungsschiff "Joides Resolution" entdeckten sie Leben im Meeresboden in bis zu 400 Meter Tiefe. Die Tests zeigten es: Die Bohrkerne enthielten lebende Mikroorganismen, eine Kontamination war ausgeschlossen. In den oberen Sedimenten zählten die Forscher bis zu 100 Millionen Einzeller pro Milliliter, tiefer unten in den bis zu 35 Millionen Jahre alten Sedimenten an der Erdkruste immerhin noch 1 Million. Die Wissenschaft steht vor einem Rätsel: Nur die obersten Schichten dieser Ablagerungen stehen mit dem Wasserkörper im Austausch - woher kommt also die Lebensenergie in der Tiefe der Sedimente?

Legt man die in den Ablagerungen vorhandenen Energiequellen zugrunde, die in Form von organischen Kohlenstoffverbindungen den Zellen zur Verfügung stehen, kann man berechnen, dass die Zellen sich nur etwa alle tausend Jahre teilen können. Diese extrem langsame Verdopplungszeit ist mit dem jetzigen Verständnis von lebenden Zellen nicht in Einklang zu bringen.

Jørgensen und D’Hondt schlagen jetzt aufgrund ihrer Daten einen Prozess vor, der in großen Bereichen des Pazifischen Ozeans eine alternative Energiequelle für das Leben tief im Meeresboden darstellen könnte: die natürliche Radioaktivität. Wasser wird durch die radioaktive Strahlung zersetzt, die beim Zerfall von natürlich vorkommenden Isotopen von Kalium, Thorium und Uran entsteht. Dieser Prozess (Radiolyse) erzeugt Wasserstoff und Sauerstoff. Die Abschätzung der Energiebilanzen zeigt, dass dieser Prozess ausreichend Energie für die Mikroorganismen liefern kann. Damit wären die Lebewesen in der Tiefen Biosphäre unabhängig von den Prozessen auf der Erdoberfläche. Die Autoren weisen darauf hin, dass sich solch ein exotischer Lebensraum auch auf anderen Planeten fernab von Sonnen entwickelt haben könnte.

Im Dezember 2006 fahren die Forscher mit dem Bohrschiff "RV Roger Revelle" in den südlichen Pazifik. Dort, fernab von den Kontinentalschelfen, gibt es nur sehr geringe Mengen an Kohlenstoffverbindungen, die Mikroorganismen als Lebensgrundlage dienen können. Umso mehr sind sie gespannt auf die Sedimentproben vom Meeresboden.

Originalveröffentlichung:

B.B. Jørgensen and Steven D´Hondt
A Starving Majority Deep Beneath the Seafloor
Science, 10 November 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Biosphäre Meeresboden Mikroorganismus Prozess Radioaktivität Sediment

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie