Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molche mit nachwachsendem Herz

09.11.2006
Max-Planck-Wissenschaftler decken molekulare Details der Regeneration beim Molch auf

Molche können ihre Gliedmaßen bei Verlust wieder nachwachsen lassen, und auch ein verletztes Herz wird vollständig wiederhergestellt. Wissenschaftler des Max-Planck-Instituts für Herz- und Lungenforschung in Bad Nauheim haben nun begonnen, die zellulären Mechanismen dieser beeindruckenden Regenerationsleistung zu entschlüsseln und sind auf eine bemerkenswerte Plastizität von Molch-Herzzellen gestoßen. Da Säugetieren - und damit auch dem Menschen - diese Fähigkeiten fehlen, könnten die Erkenntnisse zur Entwicklung neuer Zelltherapien für Patienten mit geschädigten Organen beitragen (Journal of Cell Science, 2006).


Der Grünliche Wassermolch, Notophthalmus viridescens. Bild: Max-Planck-Institut für Herz- und Lungenforschung


Herzmuskelzellen, die in ein sich regenerierendes Bein gespritzt wurden, produzieren nach zwei Wochen Proteine, die typisch sind für Skelettmuskelzellen (grün). Die Zellen wurden zuvor mit einem roten Farbstoff angefärbt, sodass in der Überlagerung die Farbe Orange entsteht. Dagegen ist bereits zwei Tage nach der Injektion der Herzmuskel-Marker Troponin T in den injizierten Zellen, wieder mit rotem Farbstoff angefärbt, nicht mehr nachweisbar. Der Ausschnitt zeigt ein als Kontrolle angefärbtes Stück Herzgewebe an, das aufgrund der Troponin T Anfärbung grün leuchtet. Bild: Max-Planck-Institut für Herz- und Lungenforschung

Notophthalmus viridescens, Grünlicher Wassermolch, heißt eines der Lieblingstiere der Bad Nauheimer Forscher um Thomas Braun. Die Amphibie ist eigentlich in den Feuchtgebieten Nordamerikas beheimatet, fühlt sich aber auch in den Aquarien des Instituts recht wohl. Für die Wissenschaftler ist dieses kleine Tier besonderes interessant: Denn während beim Menschen ein beispielsweise durch Herzinfarkt geschädigter Herzmuskel nicht ausreichend regenerieren kann, sondern das zerstörte Muskelgewebe stattdessen vernarbt, wird das Molchherz nach einer Schädigung vollständig repariert und die Funktion des Organs zu hundert Prozent wieder hergestellt.

Der Schlüssel zu dieser Regenerationsfähigkeit sind die Herzmuskelzellen selbst. Die Zellen im Molchherz sind nach einer Schädigung des Organs in der Lage, ihre charakteristischen Eigenschaften aufzugeben, sich zu dedifferenzieren. Dabei werden - das konnten die Forscher zeigen - typische Proteine von Herzmuskelzellen, die schwere Myosinkette und verschiedener Troponine, dramatisch herunterreguliert. Gleichzeitig beginnen die Zellen, sich massiv zu teilen und so neue Herzmuskelmasse aufzubauen. Die Wiederherstellung der Herzfunktion dauert beim Molch rund zwei Wochen. Die Daten zeigen, dass zu diesem Zeitpunkt die Expression der muskelspezifischen Proteine wieder normal ist, d.h. die Zellen haben sich wieder differenziert, also ihre charakteristischen Eigenschaften zurück gewonnen.

Die Forscher isolierten die Herzmuskelzellen und nahmen sie in Kultur. Bei einem Großteil der Zellen konnten Braun und seine Mitarbeiter ein Protein namens Phospho-H3 nachweisen. Dieses Protein ist ein Marker für die G2-Phase des Zellzyklus und ein Hinweis darauf, dass die Herzregeneration beim Molch ohne die Beteiligung von Stammzellen abläuft. Auch bildet sich bei der Herzregeneration augenscheinlich kein typisches Wundheilungsgewebe aus, das als Blastem bezeichnet wird. "Das Herz besitzt nur eine relativ kleine Anzahl verschiedener Zelltypen. Dies könnte ein Grund sein, weshalb für den Wiederaufbau von Herzgewebe kein Blastem notwendig ist. ", erklärt Braun diesen Befund. Auch haben die Bad Nauheimer Forscher keine Hinweise für die Beteiligung von Stammzellen an der Herzreparatur in Molchen gefunden.

Anders sehen die Abläufe bei der Regeneration verloren gegangener Extremitäten aus: Hier entwickeln die Molche - im Unterschied zum Herzen - ein Blastem. Blastemzellen haben gewisse Charakteristika, wie z. B. die Ausbildung verschiedener Zelltypen mit Stammzellen gemein. Die Bad Nauheimer Zellbiologen injizierten nun isolierte Herzmuskelzellen in ein nach Amputation neu auswachsendes Molchbein. In diesem Umfeld begannen sich die Zellen, wie beim Herzen, zu dedifferenzieren; bei einer Injektion in eine ungeschädigte Extremität taten sie dies nicht. Und wiederum registrierten die Forscher innerhalb kürzester Zeit den Verlust von herzmuskelspezifischen Proteinen. Gleichzeitig wurde nun aber die Expression von Proteinen eingeleitet, die charakteristisch für Blastemzellen sind, wie z.B. das Marker-Protein 22/8. Rund 15 Tage nach ihrer Transplantation in das Molchbein hatten sich die Zellen zu Skelettmuskelzellen differenziert und herzmuskeltypische Marker waren verloren gegangen.

"Wir vermuten, dass das Signal für die Dedifferenzierung von Zellen des Wundheilungsgebietes ausgeht und die Zellen untereinander kommunizieren", erklärt Braun. Solche Signale könnten z. B. durch bestimmte Enzym vermittelt werden. Ein solches Enzym - die focal adhesion kinase -, die an der Übertragung von Signalen in die Zelle beteiligt ist, ist nämlich bei den transplantierten Zellen phosphoryliert und damit aktiv. Die Bad Nauheimer Max-Planck-Forscher hoffen, dass sich mit einem tieferen Verständnis der molekularen Zusammenhänge der Regeneration beim Molch neue Wege für die Reparatur geschädigter Herzen beim Patienten eröffnen.

Originalveröffentlichung:

Friedemann Laube, Matthias Heister, Christian Scholz, Thilo Borchardt, Thomas Braun
Re-programming of newt cardiomyocytes is induced by tissue regeneration
Journal of Cell Science, 119 (22), 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blastem Herzmuskelzelle Molch Organ Protein Regeneration Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie