Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Signal und Abertausende von Antworten

09.11.2006
Max-Planck-Wissenschaftler schaffen wertvolle Datenbank zur Analyse phosphorylierter Proteine

Zelluläre Signale werden oft mithilfe spezifischer Änderungen an Proteinen übertragen. Am häufigsten ist die Phosphorylierung, also die reversible Anhängung einer Phosphatgruppe. Wissenschaftler vom Max-Planck-Institut für Biochemie in Martinsried haben nun eine Methode entwickelt, um quantitativ die Stellen zu identifizieren, die unter anderem als Antwort auf bestimmte Signale in lebenden Zellen phosphoryliert werden.

Die Forscher um Matthias Mann konnten insgesamt 6.600 Phosphorylierungsstellen bei 2.244 Proteinen in ihrer zeitlichen Dynamik nachweisen, von denen mehr als 90 Prozent bislang tatsächlich unbekannt waren. Diese Phosphorylierungsstellen werden auf der eigens eingerichteten Phosida-Datenbank präsentiert und stehen so Wissenschaftlern aller Fachrichtungen zur Verfügung. Die Daten sollten aber nicht zuletzt auch für Krebsforscher nutzbringend sein, kommt es im Verlauf von Tumorerkrankungen doch häufig zu Störungen der zellulären Signalübertragung. (Cell, 2. November 2006)

Säugerzellen müssen unablässig auf Signale aus der Umwelt reagieren. Wachstumsfaktoren beispielsweise können das Wachstum der Zelle, ihre Differenzierung oder Vermehrung (Proliferation) auslösen, wenn entsprechende Bedingungen in der Zelle gegeben sind. Diese genau regulierten und kontrollierten Abläufe sind so wichtig, dass es bei Störungen zu Krebsleiden oder anderen Erkrankungen kommen kann. Die Forschung arbeitet seit mehreren Jahrzehnten an der Entschlüsselung der wichtigsten Faktoren. Sie konnte meist aber nur einzelne Moleküle identifizieren oder analysieren, wie sich kurze Abschnitte der Übertragungswege auf die Produktion von Proteinen auswirken. Tatsächlich aber erfolgt die zelluläre Antwort auf Umweltsignale häufig nicht auf der Ebene der Proteinproduktion, sondern wird über die Änderung (Modifikation) der fertigen Moleküle vermittelt. "Die wichtigste - und am besten untersuchte - Veränderung ist die Phosphorylierung", sagt Matthias Mann. "Nach Schätzungen betrifft sie etwa ein Drittel aller Proteine. Das macht das dynamische Phosphoproteom, also die Gesamtheit aller Phosphorylierungen im Verlauf der Zeit, zu einem essenziellen Baustein der zellulären Regulation auf Systemebene."

Mann und seinen Mitarbeitern gelang es, eine von ihnen entwickelte Methode so zu verbessern und zu ergänzen, dass erstmals die Gesamtheit der Phosphorylierungen an allen Proteinen in lebenden Zellen und im zeitlichen Verlauf nachgewiesen werden konnte. Dazu wurden zunächst Zellkulturen für unterschiedliche Zeitspannen durch den Wachstumsfaktor EGF stimuliert. Es ist bekannt, dass dieser "epidermal growth factor" entlang einer Signalübertragungskette die Phosphorylierung einer Vielzahl von Enzymen und anderen Proteinen auslöst. Im Versuch wurden dann die Proteine aus den Zellen gewonnen, in mehrere Fraktionen aufgeteilt und mittels Massenspektrometrie analysiert. Dieses Verfahren erlaubt die genaue Bestimmung der Struktur und Zusammensetzung unbekannter Verbindungen, in diesem Falle also der zellulären Proteine. Insgesamt konnten so 6.600 spezifische Phosphorylierungsstellen bei 2.244 Proteinen nachgewiesen werden. "Wir haben unsere Ergebnisse mit den Informationen in bereits bestehenden Datenbanken verglichen", berichtet Mann. "Dabei hat sich gezeigt, dass mehr als 90 Prozent der von uns gefundenen Phosphorylierungsstellen tatsächlich neu waren. Das heißt, dass die Mehrzahl aller zellulären Phosphorylierungsstellen immer noch nicht bekannt ist."

Überraschend war auch, dass etwa die Hälfte der Proteine mehr als eine Phosphorylierungsstelle besitzt, und dass diese Stellen häufig auch unterschiedlich reguliert werden. "Es sind damit mehrere Möglichkeiten der Phosphorylierung denkbar", erklärt Mann. "Die verschiedenen Stellen in einem Protein könnten einfach unabhängig voneinander reguliert werden. Unter Umständen aber ist die Phosphorylierung einer Stelle Voraussetzung für die Modifikation der anderen. Insgesamt macht das Ergebnis deutlich, dass die Dynamik der Phosphorylierung für jede Stelle einzeln bestimmt werden sollte, und nicht wie bisher zusammengefasst für jedes Protein." Damit die neu gefundenen Phosphorylierungsstellen effizient von allen interessierten Wissenschaftlern genutzt werden können, schuf das Team um Mann die Phosida-Datenbank (www.phosida.com). Dort sind die einzelnen Phosphorylierungsstellen mit allen zugehörigen Informationen aufgelistet und mit bereits bestehenden Datenbanken verknüpft. Ein interessantes Angebot für die Forschung und nicht zuletzt auch für die Diagnose.

Originalveröffentlichung:

Jesper V. Olsen, Blagoy Blagoev, Florian Gnad, Boris Macek, Chanchal Kumar, Peter Mortensen, and Matthias Mann
Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks

Cell, 2. November 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Phosphorylierung Phosphorylierungsstellen Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

nachricht Forscher entwickeln Unterwasser-Observatorium
07.12.2016 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie