Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Signal und Abertausende von Antworten

09.11.2006
Max-Planck-Wissenschaftler schaffen wertvolle Datenbank zur Analyse phosphorylierter Proteine

Zelluläre Signale werden oft mithilfe spezifischer Änderungen an Proteinen übertragen. Am häufigsten ist die Phosphorylierung, also die reversible Anhängung einer Phosphatgruppe. Wissenschaftler vom Max-Planck-Institut für Biochemie in Martinsried haben nun eine Methode entwickelt, um quantitativ die Stellen zu identifizieren, die unter anderem als Antwort auf bestimmte Signale in lebenden Zellen phosphoryliert werden.

Die Forscher um Matthias Mann konnten insgesamt 6.600 Phosphorylierungsstellen bei 2.244 Proteinen in ihrer zeitlichen Dynamik nachweisen, von denen mehr als 90 Prozent bislang tatsächlich unbekannt waren. Diese Phosphorylierungsstellen werden auf der eigens eingerichteten Phosida-Datenbank präsentiert und stehen so Wissenschaftlern aller Fachrichtungen zur Verfügung. Die Daten sollten aber nicht zuletzt auch für Krebsforscher nutzbringend sein, kommt es im Verlauf von Tumorerkrankungen doch häufig zu Störungen der zellulären Signalübertragung. (Cell, 2. November 2006)

Säugerzellen müssen unablässig auf Signale aus der Umwelt reagieren. Wachstumsfaktoren beispielsweise können das Wachstum der Zelle, ihre Differenzierung oder Vermehrung (Proliferation) auslösen, wenn entsprechende Bedingungen in der Zelle gegeben sind. Diese genau regulierten und kontrollierten Abläufe sind so wichtig, dass es bei Störungen zu Krebsleiden oder anderen Erkrankungen kommen kann. Die Forschung arbeitet seit mehreren Jahrzehnten an der Entschlüsselung der wichtigsten Faktoren. Sie konnte meist aber nur einzelne Moleküle identifizieren oder analysieren, wie sich kurze Abschnitte der Übertragungswege auf die Produktion von Proteinen auswirken. Tatsächlich aber erfolgt die zelluläre Antwort auf Umweltsignale häufig nicht auf der Ebene der Proteinproduktion, sondern wird über die Änderung (Modifikation) der fertigen Moleküle vermittelt. "Die wichtigste - und am besten untersuchte - Veränderung ist die Phosphorylierung", sagt Matthias Mann. "Nach Schätzungen betrifft sie etwa ein Drittel aller Proteine. Das macht das dynamische Phosphoproteom, also die Gesamtheit aller Phosphorylierungen im Verlauf der Zeit, zu einem essenziellen Baustein der zellulären Regulation auf Systemebene."

Mann und seinen Mitarbeitern gelang es, eine von ihnen entwickelte Methode so zu verbessern und zu ergänzen, dass erstmals die Gesamtheit der Phosphorylierungen an allen Proteinen in lebenden Zellen und im zeitlichen Verlauf nachgewiesen werden konnte. Dazu wurden zunächst Zellkulturen für unterschiedliche Zeitspannen durch den Wachstumsfaktor EGF stimuliert. Es ist bekannt, dass dieser "epidermal growth factor" entlang einer Signalübertragungskette die Phosphorylierung einer Vielzahl von Enzymen und anderen Proteinen auslöst. Im Versuch wurden dann die Proteine aus den Zellen gewonnen, in mehrere Fraktionen aufgeteilt und mittels Massenspektrometrie analysiert. Dieses Verfahren erlaubt die genaue Bestimmung der Struktur und Zusammensetzung unbekannter Verbindungen, in diesem Falle also der zellulären Proteine. Insgesamt konnten so 6.600 spezifische Phosphorylierungsstellen bei 2.244 Proteinen nachgewiesen werden. "Wir haben unsere Ergebnisse mit den Informationen in bereits bestehenden Datenbanken verglichen", berichtet Mann. "Dabei hat sich gezeigt, dass mehr als 90 Prozent der von uns gefundenen Phosphorylierungsstellen tatsächlich neu waren. Das heißt, dass die Mehrzahl aller zellulären Phosphorylierungsstellen immer noch nicht bekannt ist."

Überraschend war auch, dass etwa die Hälfte der Proteine mehr als eine Phosphorylierungsstelle besitzt, und dass diese Stellen häufig auch unterschiedlich reguliert werden. "Es sind damit mehrere Möglichkeiten der Phosphorylierung denkbar", erklärt Mann. "Die verschiedenen Stellen in einem Protein könnten einfach unabhängig voneinander reguliert werden. Unter Umständen aber ist die Phosphorylierung einer Stelle Voraussetzung für die Modifikation der anderen. Insgesamt macht das Ergebnis deutlich, dass die Dynamik der Phosphorylierung für jede Stelle einzeln bestimmt werden sollte, und nicht wie bisher zusammengefasst für jedes Protein." Damit die neu gefundenen Phosphorylierungsstellen effizient von allen interessierten Wissenschaftlern genutzt werden können, schuf das Team um Mann die Phosida-Datenbank (www.phosida.com). Dort sind die einzelnen Phosphorylierungsstellen mit allen zugehörigen Informationen aufgelistet und mit bereits bestehenden Datenbanken verknüpft. Ein interessantes Angebot für die Forschung und nicht zuletzt auch für die Diagnose.

Originalveröffentlichung:

Jesper V. Olsen, Blagoy Blagoev, Florian Gnad, Boris Macek, Chanchal Kumar, Peter Mortensen, and Matthias Mann
Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks

Cell, 2. November 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Phosphorylierung Phosphorylierungsstellen Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten