Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen auf Selbsterneuerungskur

03.11.2006
Max-Planck-Forscher aus Münster entdecken ein kleines Molekül, mit dem sich Stammzellen im Labor erheblich leichter als bisher vermehren lassen

Ein kleines Molekül macht Stammzellen vermehrungs- und wandlungsfähig: Die einfach gebaute Substanz namens SC1, die Forscher des Max-Planck-Instituts für molekulare Biomedizin in Münster zusammen mit kalifornischen Kollegen aufgespürt haben, bringt Stammzellen im Labor dazu sich selbst zu erneuern. Dadurch behalten sie die Fähigkeit, sich in viele unterschiedliche Zellen zu differenzieren. Die Zellen pluripotent zu halten, war im Labor bisher nur mit großem Aufwand möglich. Zudem lieferte das herkömmliche Verfahren nur verunreinigte Zellen. Für denkbare medizinische Anwendungen eignen sich aber nur sehr saubere Zellen. Bei der Suche nach der neuen Substanz haben die Wissenschaftler auch neue Erkenntnisse gewonnen, wie sich Stammzellen vermehren (PNAS, 31. Oktober 2006).


Stammzellen, die sich auf diese Weise erneuert haben, bleiben pluripotent und eignen sich, chimäre Mäuse zu erzeugen. Bild: Max-Planck-Institut für Biomedizin

Embryonale Stammzellen könnten künftig helfen, viele verschiedene Krankheiten zu lindern oder zu heilen, weil sie pluripotent sind. Das heißt, sie können sich sowohl im Körper als auch in der Kulturschale in viele verschiedene Zellen eines Organismus verwandeln. Im Labor wollen Wissenschaftler aber erst viele pluripotente Zellen erhalten, die sich anschließend in spezialisierte Zellen differenzieren. Nur so gelangen sie an eine ausreichende Zahl spezialisierter Zellen, um sie eventuell für Therapien einzusetzen.

Das kleine Molekül SC1 macht das möglich. Wissenschaftler vom Max-Planck-Institut für molekulare Biomedizin in Münster, vom Scripps Research Institute in La Jolla und vom Genomics Institute der Novartis Research Foundation in San Diego haben es entdeckt. Es verhindert, dass sich die Zelle spezialisiert und ihre Pluripotenz verliert. "Mit Hilfe dieses Moleküls können wir Stammzellen künftig sauber und auf relativ einfache und preiswerte Weise vermehren. Über eine sehr lange Zeit haben wir die Stammzellen von Mäusen damit im undifferenzierten Zustand gehalten", sagt Jeong Tae Do, einer der beteiligten Max-Planck-Forscher: "Für die Stammzellenforschung ist das ein wichtiger Fortschritt."

... mehr zu:
»Enzym »Labor »Molekül »SC1 »Stammzelle »Zelle

Bislang war es sehr mühsam Stammzellen im Labor so zu halten, dass sie pluripotent bleiben, wenn sie sich teilen. Die Forscher mussten sie zum Beispiel auf Nährzellen, also fremden tierischen Zellen, sowie in Kälberserum züchten und noch eine Reihe teurer Substanzen hinzufügen. Menschliche Stammzellen würden schon deshalb nicht für medizinische Anwendung taugen, weil sie mit tierischen Produkten verunreinigt wären.

SC1 wirkt dabei nicht nach demselben Prinzip wie der Cocktail, den Forscher bislang als Jungbrunnen für Stammzellen verwendeten. "Erstaunlicherweise blockiert es gleich zwei Enzyme, die an der Differenzierung beteiligt sind", sagt Jeong Tae Do. Eines dieser Enzyme heißt RasGAP. An dieses Enzym bindet SC1 an einem frühen Punkt des Reaktionspfades, der über das Schicksal der Zelle entscheidet. Auf diese Weise aktiviert SC1 indirekt ein Protein, das sowohl Differenzierung als auch Selbsterneuerung vorantreibt. Später gabelt sich der Pfad zu beiden Optionen. Dort nimmt SC1 seine zweite Aufgabe wahr und blockiert die Kinase ERK1, die an der Differenzierung wesentlich mitwirkt. So verstellt es den Weg zur Spezialisierung, und die Stammzelle muss sich erneuern. Ob diese beiden biochemischen Signalpfade auch bei der Selbsterneuerung von Stammzellen eine Rolle spielen, war bislang noch unklar. Völlig neu ist, dass SC1 sie mit Hilfe dieser Doppelstrategie blockieren kann.

Um ein neues Mittel zu finden, dass Stammzellen im Labor pluripotent hält, gingen die Wissenschaftler nach dem Zufallsprinzip vor: Sie testeten 50000 Substanzen, und am Ende blieb SC1, das auf dem Grundbaustein Dihydropyrimidopyrimidin basiert, als das am besten geeignete übrig. Die Forscher haben anschließend geprüft, ob sich Stammzellen, die mit SC1 behandelt wurden, auch mit lebenden Organismen vertragen. Zu diesem Zweck injizierten die Wissenschaftler eine solche Zelle der Blastocyste einer Maus - einer schon mehrfach geteilten befruchteten Eizelle. Auf diese Weise erzeugten sie eine chimäre Maus. Die Maus hat also anschließend zwei verschiedene Genome, die der Eizelle und die der eingeschleusten Stammzelle. In der chimären Maus mit der SC1-behandelten Stammzelle integrierten sich Zellen, die aus der eingeschleusten Stammzelle hervorgegangen waren, in allen Organen. Damit bewiesen die Forscher, dass Stammzellen, die sie mit SC1 behandeln, voll einsatzfähig bleiben.

Originalveröffentlichung:

Shuibing Chen, Jeong Tae Do, Qisheng Zhang, Shuyuan Yao, Feng Yan, Eric C. Peters, Hans R. Schöler, Peter G. Schultz and Sheng Ding
Self-renewal of embryonic stem cells by a small molecule
Proceedings of the National Academy of Sciences, 31. Oktober 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Enzym Labor Molekül SC1 Stammzelle Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

nachricht Molekulare Chaperone als Helfer gegen Chorea-Huntington identifiziert
11.12.2017 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik