Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen auf Selbsterneuerungskur

03.11.2006
Max-Planck-Forscher aus Münster entdecken ein kleines Molekül, mit dem sich Stammzellen im Labor erheblich leichter als bisher vermehren lassen

Ein kleines Molekül macht Stammzellen vermehrungs- und wandlungsfähig: Die einfach gebaute Substanz namens SC1, die Forscher des Max-Planck-Instituts für molekulare Biomedizin in Münster zusammen mit kalifornischen Kollegen aufgespürt haben, bringt Stammzellen im Labor dazu sich selbst zu erneuern. Dadurch behalten sie die Fähigkeit, sich in viele unterschiedliche Zellen zu differenzieren. Die Zellen pluripotent zu halten, war im Labor bisher nur mit großem Aufwand möglich. Zudem lieferte das herkömmliche Verfahren nur verunreinigte Zellen. Für denkbare medizinische Anwendungen eignen sich aber nur sehr saubere Zellen. Bei der Suche nach der neuen Substanz haben die Wissenschaftler auch neue Erkenntnisse gewonnen, wie sich Stammzellen vermehren (PNAS, 31. Oktober 2006).


Stammzellen, die sich auf diese Weise erneuert haben, bleiben pluripotent und eignen sich, chimäre Mäuse zu erzeugen. Bild: Max-Planck-Institut für Biomedizin

Embryonale Stammzellen könnten künftig helfen, viele verschiedene Krankheiten zu lindern oder zu heilen, weil sie pluripotent sind. Das heißt, sie können sich sowohl im Körper als auch in der Kulturschale in viele verschiedene Zellen eines Organismus verwandeln. Im Labor wollen Wissenschaftler aber erst viele pluripotente Zellen erhalten, die sich anschließend in spezialisierte Zellen differenzieren. Nur so gelangen sie an eine ausreichende Zahl spezialisierter Zellen, um sie eventuell für Therapien einzusetzen.

Das kleine Molekül SC1 macht das möglich. Wissenschaftler vom Max-Planck-Institut für molekulare Biomedizin in Münster, vom Scripps Research Institute in La Jolla und vom Genomics Institute der Novartis Research Foundation in San Diego haben es entdeckt. Es verhindert, dass sich die Zelle spezialisiert und ihre Pluripotenz verliert. "Mit Hilfe dieses Moleküls können wir Stammzellen künftig sauber und auf relativ einfache und preiswerte Weise vermehren. Über eine sehr lange Zeit haben wir die Stammzellen von Mäusen damit im undifferenzierten Zustand gehalten", sagt Jeong Tae Do, einer der beteiligten Max-Planck-Forscher: "Für die Stammzellenforschung ist das ein wichtiger Fortschritt."

... mehr zu:
»Enzym »Labor »Molekül »SC1 »Stammzelle »Zelle

Bislang war es sehr mühsam Stammzellen im Labor so zu halten, dass sie pluripotent bleiben, wenn sie sich teilen. Die Forscher mussten sie zum Beispiel auf Nährzellen, also fremden tierischen Zellen, sowie in Kälberserum züchten und noch eine Reihe teurer Substanzen hinzufügen. Menschliche Stammzellen würden schon deshalb nicht für medizinische Anwendung taugen, weil sie mit tierischen Produkten verunreinigt wären.

SC1 wirkt dabei nicht nach demselben Prinzip wie der Cocktail, den Forscher bislang als Jungbrunnen für Stammzellen verwendeten. "Erstaunlicherweise blockiert es gleich zwei Enzyme, die an der Differenzierung beteiligt sind", sagt Jeong Tae Do. Eines dieser Enzyme heißt RasGAP. An dieses Enzym bindet SC1 an einem frühen Punkt des Reaktionspfades, der über das Schicksal der Zelle entscheidet. Auf diese Weise aktiviert SC1 indirekt ein Protein, das sowohl Differenzierung als auch Selbsterneuerung vorantreibt. Später gabelt sich der Pfad zu beiden Optionen. Dort nimmt SC1 seine zweite Aufgabe wahr und blockiert die Kinase ERK1, die an der Differenzierung wesentlich mitwirkt. So verstellt es den Weg zur Spezialisierung, und die Stammzelle muss sich erneuern. Ob diese beiden biochemischen Signalpfade auch bei der Selbsterneuerung von Stammzellen eine Rolle spielen, war bislang noch unklar. Völlig neu ist, dass SC1 sie mit Hilfe dieser Doppelstrategie blockieren kann.

Um ein neues Mittel zu finden, dass Stammzellen im Labor pluripotent hält, gingen die Wissenschaftler nach dem Zufallsprinzip vor: Sie testeten 50000 Substanzen, und am Ende blieb SC1, das auf dem Grundbaustein Dihydropyrimidopyrimidin basiert, als das am besten geeignete übrig. Die Forscher haben anschließend geprüft, ob sich Stammzellen, die mit SC1 behandelt wurden, auch mit lebenden Organismen vertragen. Zu diesem Zweck injizierten die Wissenschaftler eine solche Zelle der Blastocyste einer Maus - einer schon mehrfach geteilten befruchteten Eizelle. Auf diese Weise erzeugten sie eine chimäre Maus. Die Maus hat also anschließend zwei verschiedene Genome, die der Eizelle und die der eingeschleusten Stammzelle. In der chimären Maus mit der SC1-behandelten Stammzelle integrierten sich Zellen, die aus der eingeschleusten Stammzelle hervorgegangen waren, in allen Organen. Damit bewiesen die Forscher, dass Stammzellen, die sie mit SC1 behandeln, voll einsatzfähig bleiben.

Originalveröffentlichung:

Shuibing Chen, Jeong Tae Do, Qisheng Zhang, Shuyuan Yao, Feng Yan, Eric C. Peters, Hans R. Schöler, Peter G. Schultz and Sheng Ding
Self-renewal of embryonic stem cells by a small molecule
Proceedings of the National Academy of Sciences, 31. Oktober 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Enzym Labor Molekül SC1 Stammzelle Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie