Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln mögen's heiß und salzig

03.11.2006
Potsdamer Max-Planck-Wissenschaftler entwickeln neue Methode, mit der man die Wanddurchlässigkeit von Mikrokapseln mittels Salzgehalt und Temperatur steuern kann

Eine neue Methode, mit der man durch den Salzgehalt sowie die Temperatur der Lösung die Wanddurchlässigkeit von Mikrokapseln gezielt steuern kann, , haben Wissenschaftler des Potsdamer Max-Planck-Instituts für Kolloid- und Grenzflächenforschung jetzt vorgestellt. Dazu entwickelten die Forscher ein theoretisches Modell, das die Vorgänge in der Polymerhülle der Kapseln exakt beschreibt. Damit lässt sich ohne experimentelle Untersuchungen vorhersagen, wie sich die Eigenschaften der Hohlkügelchen bei Veränderung von Temperatur und Salzgehalt verändern (Physical Review Letters, 3. November 2006). Das eröffnet neue Möglichkeiten, die Mikrokapseln für den Transport von Wirkstoffen im Körper, als Bestandteil sich selbst reparierender Autolackierungen oder als Mikrosensoren und Mikropumpen einzusetzen.


Elektronenmikroskopische Aufnahmen von Kapseln unterschiedlicher Größe. Die Polymerhohlkugeln fallen beim Eintrocknen in sich zusammen wie ein Fußball ohne Luft: a) ursprüngliche Größe der Kapseln, b) geschwollene Kapseln bei erhöhter Temperatur, c) nach Salzzugabe geschrumpfte Kapseln. Bei Salzzugabe ist die Kapselwand dick genug, um das Zusammenfallen zu verhindern. Bild: Max-Planck-Instituts für Kolloid- und Grenzflächenforschung

Arzneimittel sollten im Idealfall nur direkt in die erkrankten Regionen des Körpers gelangen, so dass Nebenwirkungen verhindert und gleichzeitig eine größtmögliche Wirkung erzielt wird. Dafür bedarf es intelligenter Transportsysteme, die die Wirkstoffe zunächst einschließen, um sie dann unter bestimmten Bedingungen am Wirkort wieder freizusetzen. Wissenschaftler des Potsdamer Max-Planck-Instituts für Kolloid- und Grenzflächenforschung arbeiten an einem Mikrotransportsystem, das genau diesen Ansprüchen gerecht werden könnte: Wenige Mikrometer, also nur Tausendstel Millimeter große Polymerkapseln schleusen die Medikamente durch den Organismus. Dabei sind die Wände der Mikrokapseln aus Schichten mit abwechselnd positiv und negativ geladenen Polymermolekülen aufgebaut, so dass Moleküle mit verschiedensten Eigenschaften zur Kapselherstellung verwendet werden können.

Wichtig für die optimale Einsatzfähigkeit der Kapseln ist es, dass man die Durchlässigkeit der Kapselwand gezielt einstellen kann: Beim Befüllen der Mikrocontainer muss die Wand zunächst für den Wirkstoff durchlässig sein, damit er hineingelangt. Anschließend sollte der Inhalt durch Abdichten der Kapselhülle eingeschlossen werden, um ihn dann am Wirkort durch die Kapselwand wieder abgeben zu können. Die Potsdamer Wissenschaftler haben jetzt herausgefunden, dass man Dichte und Dicke der Kapselwand und damit ihre Durchlässigkeit bereits durch Änderung der Temperatur und des Salzgehaltes kontrollieren kann.

Erhöht man die Temperatur nur leicht, schwellen oder schrumpfen die Hohlkugeln bei gleichzeitiger Verdünnung bzw. Verdickung ihrer Wand. Dies hängt von der Zusammensetzung und elektrischen Ladung der Polymerhülle ab:

- Beim Schrumpfen ist die Einkapselung von sehr kleinen Molekülen möglich: Durch die starke Energiezufuhr beim Erhitzen lösen sich die Bindungen zwischen den entgegengesetzt geladenen Polymermolekülen und in Folge dessen weicht die Kapselwand auf. Das Material der Hülle kann so enger zusammen fließen, die Wand wird dicker und dichter. Die Moleküle können jetzt nicht mehr hindurchwandern und sind im Inneren eingeschlossen.

- Schwellen die Hohlkügelchen, weichen die Polymerwände beim Erhitzen auch auf. Jedoch befinden sich so viele gleichwertige Ladungen in der Kapselwand, dass sie sich dabei gegenseitig abstoßen. Die gesamte Struktur wird so unter Zunahme des Durchmessers und der Wandverdünnung erheblich aufgebläht. Das Ergebnis ist eine deutlich erhöhte Durchlässigkeit im Vergleich zu den Ursprungskapseln bei Raumtemperatur.

Wird jetzt Salz in die Kapsellösung gegeben, neutralisieren sich die elektrischen Ladungen und die Kapseln schrumpfen wieder, wobei sich die Wand verdickt wie in dem zuerst beschriebenen Fall. "Durch die Kombination einfacher Mittel, wie sie in jeder Küche zur Verfügung stehen, können wir die Wandeigenschaften der Mikrotransportsysteme beliebig variieren", sagt Karen Köhler, eine an diesem Projekt beteiligte Wissenschaftlerin des Potsdamer Max-Planck-Instituts für Kolloid- und Grenzflächenforschung. Dabei variiert der Spielraum für Kapseln mit einem ursprünglichen Durchmesser von 4,5 Mikrometern zwischen 1,5 bis zu 20 Mikrometern (s. Abb. 1).

Die Kapselgröße ist jedoch nicht nur im Labor zielgenau einstellbar. Die Wissenschaftler haben die Vorgänge in der Kapselwand auch theoretisch verstanden, so dass sie den Durchmesser der Hohlkugeln unter den jeweiligen Bedingungen ganz ohne Experiment vorhersagen können. Das von ihnen entwickelte Modell beinhaltet den Wettstreit zweier Kräfte, zum einen der Polymer/Wasser-Grenzflächenspannung, die die Kapsel und ihre Oberfläche verkleinern möchte. Auf der anderen Seite die elektrostatische Abstoßungskraft zwischen den gleichnamigen Ladungen in der Polymerhülle, die die Kapsel schwellen lässt. "Je nach Stärke der beiden Kontrahenten lässt sich die Kapselgröße bei einer ganz bestimmten Salzkonzentration und Temperatur genau vorausberechnen", erklärt Maarten Biesheuvel, ebenfalls Mitglied des Forscherteams.

Das theoretische Modell sagt dabei auch voraus, dass es möglich sein sollte, durch geschickte Einstellung der Bedingungen zunächst geschwollene Kapseln wieder zu schrumpfen und umgekehrt. Genau diese Vorhersage konnte dann auch experimentell bestätigt werden.

Dieses kontinuierliche Hin- und Herschalten zwischen den zwei Zuständen ganz unterschiedlicher Kapselgröße erweitert die Palette der möglichen Anwendungen für die Potsdamer Mikrokapseln enorm: Neben dem Einsatz als Arzneistofftransporter sind Anwendungen der Kapseln als Bestandteil von Autolackierungen, die bei Beschädigung ein Korrosionsschutzmittel freisetzen und so eine Vergrößerung der Schadstelle verhindern, denkbar. Außerdem könnten sie als Mikrosensoren Auskunft über die Konzentration von bestimmten Molekülen, wie etwa Glukose oder Kalzium-Ionen in Zellen geben und auch als Mikropumpen fungieren.

Originalveröffentlichung:

Karen Köhler, P. Maarten Biesheuvel, Richard Weinkamer, Helmuth Möhwald und Gleb B. Sukhorukov: Salt-induced swelling-to-shrinking transition in polyelectrolyte multilayer microcapsules

Physical Review Letters, 3 November 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Kapseln Kapselwand Ladung Mikrokapseln Molekül Salzgehalt Temperatur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik