Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Steuermechanismus biologischer Musterbildung entschlüsselt

03.11.2006
Freiburger Forscherteam legt molekularen Mechanismus offen, der die Musterbildung bei der räumlichen Verteilung und Dichte von Haarfollikeln reguliert

Wie können einfache embryonale Strukturen die vielfältigen und komplexen Erscheinungsformen der belebten Natur hervorbringen? Freiburger Wissenschaftler haben jetzt jene Proteine identifiziert, die das Muster der Haarbildung bei Mäusen regulieren. Danach kontrollieren von der Haut produzierte Proteine, die WNT’s, die für die Anlage von Haarfollikeln essentiell sind, zusammen mit den so genannten DKK-Inhibitoren die räumliche Anordnung der Follikel. Mit einem mathematischen Modell auf der Basis von Proteinreaktionen und -diffusionen konnten die Forscher die Dynamik und Parameter der Haarbildung erklären und die bislang noch nicht bestätigte Turing-Hypothese der biologischen Musterbildung erstmals experimentell bestätigen (Science Express, 2. November 2006).


Gefärbte Hautschnitte von Mäusen. Die Verteilung von Haaren und deren Follikel in der Haut verändert sich in Abhängigkeit von den Proteinen WNT und DKK. Bild: Max-Planck-Institut für Immunbiologie

Während der Reifung der Haut führt eine wohlgeordnete Abfolge molekularer Prozesse zur Entstehung verschiedener epidermaler Strukturen, zu denen auch die Haar- und Federfollikel von Säugetieren bzw. Vögeln zählen. Ein besonderes Merkmal dieser Follikel ist ihre charakteristische räumliche Verteilung und Dichte. Eine herausragende Rolle unter den Substanzen, die an der Induktion und Heranreifung der Follikel beteiligt sind, spielen Signalmoleküle aus der Familie der WNT’s. Erfüllen diese Proteine ihre Funktion nicht, fehlen jegliche morphologischen und molekularen Anzeichen einer Musterbildung. Die Wirkung der WNT’s wird unter anderem durch Inhibitoren aus der Proteinfamilie der DKK’s reguliert, die auch während der Follikelinduktion produziert werden.

Eine mögliche Erklärung für die Entstehung biologischer Muster lieferte in den 1950er-Jahren der englische Mathematiker Alan Turing, auch bekannt für seine Beteiligung an der Entschlüsselung des deutschen Enigma Codes während des Zweiten Weltkrieges und seine grundlegenden Arbeiten zur Computertheorie. Aus rein theoretischen Erwägungen schlug Turing damals einen Reaktions-Diffusions-Mechanismus vor, in dem zwei chemische Substanzen miteinander reagieren und diffundieren. Er bewies mathematisch, dass ein solch einfaches System eine Vielzahl von Mustern hervorbringen kann. Wenn die eine Substanz, der Aktivator, sich selbst und einen Inhibitor produziert, während der Inhibitor den Aktivator abbaut oder hemmt, können spontan Verteilungsmuster der Substanzen in Form von Streifen und Flecken entstehen. Eine wesentliche Voraussetzung dafür ist, dass der Inhibitor sich durch Diffusion schneller verteilen kann als der Aktivator und auf diese Weise die unregelmäßige Verteilung stabilisiert. Eine solche Dynamik könnte die Anordnung periodischer Körperstrukturen sowie die Muster der Fellzeichnung bestimmen.

Biologen vom Max-Planck Institut für Immunbiologie in Freiburg haben nun in Zusammenarbeit mit theoretischen Physikern und Mathematikern der Universität Freiburg erstmals experimentelle Beweise für die Turing-Hypothese der Musterbildung geliefert: Den Forschern gelang es Substanzen zu identifizieren, die die Verteilung von Haarfollikeln bei Mäusen bestimmen. Durch einen systembiologischen Ansatz, der experimentelle Ergebnisse mit mathematischen Modellen und Computersimulationen verknüpft, konnten sie zeigen, dass Proteine der WNT- und der DKK-Familie die räumliche Anordnung von Haarfollikeln maßgeblich kontrollieren und den theoretischen Anforderungen der Turing-Hypothese der Musterbildung genügen. Gemäß den Vorhersagen des mathematischen Modells ändern sich Dichte und Anordnung der Haarfollikel bei verstärkter oder verminderter Expression der WNT- und DKK-Proteine (s. Abb.).

Neben der grundlegenden Bedeutung für das Verständnis der biologischen Musterbildung legen diese Erkenntnisse das Fundament, um den Prozess der Haarbildung unter Einbeziehung weiterer Faktoren, die vermutlich über die Kontrolle der WNT’s und DKK’s wirken, im Detail aufzuklären. Im Hinblick auf die generelle Rolle von WNT-Signalen für die Entstehung epidermaler Strukturen könnte der aktuellen Studie auf lange Sicht eine therapeutische Bedeutung zum Beispiel für die in vitro Herstellung vollwertiger Haut zu Transplantationszwecken zukommen.

Originalveröffentlichung:

Stefanie Sick, Stefan Reinker, Jens Timmer, Thomas Schlake
WNT and DKK Determine Hair Follicle Spacing Through a Reaction-Diffusion Mechanism, Science, Science Express, November 2, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Haarfollikeln Musterbildung Protein WNT’s

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie

Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden

19.01.2018 | Energie und Elektrotechnik