Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit den subtilen Waffen eines Pilzes

03.11.2006
Eine internationale Forschergruppe hat Gene identifiziert, die dem Erreger des Maisbeulenbrandes ein Leben als Parasit ermöglichen

Es sieht schon unappetitlich aus: Wenn Ustilago maydis eine Maispflanze befällt, tragen deren Kolben keine knackigen Körner, sondern monströse Beulen. Ein wirksames Mittel gegen den Erreger des Maisbeulenbrandes gibt es bislang nicht. Bei der Suche danach ist ein internationales Team von Biologen nun jedoch einen großen Schritt weitergekommen. Angeführt von Forschern des Max-Planck-Instituts für terrestrische Mikrobiologie in Marburg haben die Wissenschaftler das Genom von U. maydis analysiert.


Mais als Pilzwirt: Ustilago maydis verursacht den Maisbeulenbrand. Ein internationales Forscherteam um Biologen des Max-Planck-Instituts für terrestrische Mikrobiologie hat jetzt Gene des Pilzes identifiziert, die an der Infektion der Pflanze beteiligt sind. Bild: Christoph Basse

Dabei haben sie unter den 7000 Genen des Pilzes einige gefunden, mit denen dieser auf Kosten seiner Wirtspflanze lebt - ohne sie zu töten. Möglicherweise helfen diese Gene dem Pilz auch, die Abwehr der Pflanzen zu umgehen. Forscher hoffen nun, diese Erkenntnisse auf andere Pilze zu übertragen, die wie Ustilago maydis auf lebende Pflanzen angewiesen sind. (Nature, 2. November 2006).

In Mexiko gelten die Gallen von Ustilago maydis als Delikatesse. Den Landwirten in den meisten anderen Ländern sind die Geschwülste, die sich an Maiskolben entwickeln, jedoch ein Ärgernis. Der Pilz ist zwar nicht giftig, weshalb infizierte Maispflanzen problemlos als Viehfutter verwendet werden können, für Maismehl oder als Popcorn taugen die Beulen aber nicht. Vor allem die US-amerikanische Landwirtschaftsbehörde bemüht sich seit langem, gegen den Pilz vorzugehen - bislang vergebens.

... mehr zu:
»Cluster »Gen »Genom »Pflanze »Protein »Wirt

Ein Team von knapp 80 Wissenschaftlern aus der ganzen Welt ist dabei jetzt ein gutes Stück vorangekommen. Die Forscher untersuchten das Genom des Pilzes, um herauszufinden, wie dieser die Pflanze schädigt. Dabei haben sie eine Vielzahl von Genen identifiziert, die Baupläne für sekretierte Proteine enthalten. Solche Proteine scheidet der Pilz aus. Einige dieser Gene liegen im Genom an benachbarten Orten - sie bilden Cluster. Das ist ein Hinweis darauf, dass sie an ein und demselben Prozess mitwirken könnten.

"Wenn sie nicht in Clustern vorliegen würden, hätten wir sie vermutlich auch nicht gefunden", sagt Jörg Kämper, der die Arbeit der Forscher als wissenschaftlicher Mitarbeiter des Max-Planck-Instituts für terrestrische Mikrobiologie koordinierte: "Das ist wie bei einem Getreidefeld auf dem 200 Kornblumen wachsen: Sind sie über das Feld verstreut, fallen sie nicht auf. Stehen sie aber dicht beisammen, sind sie leicht zu identifizieren."

"Ermöglicht haben unsere Arbeit drei sehr gute Sequenzierungen", sagt Jörg Kämper. Wie sich die Bausteine der DNA im Ustilago-Erbgut aneinander reihen, hatten nämlich sowohl die Unternehmen Bayer CropScience als auch Exelixis (USA) bestimmt. Zusätzlich hat das Broad Institute (USA) Ustilago im Rahmen der Fungal Genome Initiative seqenziert. "Um die Sequenz des Genoms auszuwerten, haben wir die gesamte Ustilago-Community zusammengebracht", sagt Kämper: "Jeder hat sich um Gene für bestimmte zelluläre Prozesse gekümmert."

Die Marburger Wissenschaftler konzentrierten sich auf Gene, die eine Rolle bei der Infektion der Pflanze spielen könnten. Und sie sind bei den Clustern der sekretierten Proteine fündig geworden. Denn die Aktivität der Gene nimmt zu, sobald der Pilz eine Pflanze infiziert. "Das deutet darauf hin, dass es sich bei den sekretierten Proteinen um Effektoren handeln könnte, die die Interaktion des Pilzes mit der Pflanze steuern", sagt Regine Kahmann, Direktorin am Marburger Max-Planck-Institut. Um diesen Verdacht zu erhärten, hat ihre Arbeitsgruppe in verschiedenen Experimenten jeweils einen dieser zwölf Cluster aus dem Genom entfernt. Dabei zeigte sich, dass vier der Cluster unerlässlich dafür sind, dass der Pilz seine volle schädliche Wirkung entfalten kann. Eines der Gen-Cluster hilft U. maydis aber offenbar, die eigene Aggressivität zu zügeln. Denn der Pilz schädigte seinen Wirt sogar stärker, wenn die Wissenschaftler dieses Gen-Ensemble ausschalteten.

Dem Wirt nicht zu sehr zuzusetzen, macht für den Pilz auch Sinn. Denn Ustilago maydis ist auf die lebende Pflanze angewiesen, um sich fortzupflanzen. Dass der Pilz seinen Wirt möglichst schont, sieht man auch schon an der Zahl der pilzlichen Enzyme, die die Zellwand der Pflanze abbauen können: Ustilago hat davon gerade mal 33; Pilze, die ihre Wirte einfach auffressen, weit mehr als 100.

Ustilago maydis stellt zwar kein gravierendes Problem beim Maisanbau dar, hat sich jedoch in den letzten Jahren zu einem Modell für andere biotrophe Pilze entwickelt, von denen viele mit Ustilago maydis verwandt sind. Und diese Gruppe von Pilzen, zu denen auch die Rostpilze gehören, macht Landwirten in der ganzen Welt sehr zu schaffen. Das Erbgut der meisten dieser Pilze können Biologen jedoch nicht gezielt im Labor verändern. "Unsere Erkenntnisse über Ustilago maydis lassen sich hoffentlich auf die Gruppe dieser Pilze übertragen", sagt Kämper.

Nun wollen die Wissenschaftler herausfinden, welche Funktion die sekretierten Proteine haben. "Erstaunlichweise ähnelt kaum eines dieser Proteine einem bekannten Proteinen aus einem anderen Organismus", sagt Kahmann. Sie und ihre Kollegen vermuten, dass es der Pilz über diese Proteine die Abwehrmechanismen der Pflanze austrickst. Dabei könnten die Proteine entweder ein biochemisches Deckmäntelchen bilden, das zur Tarnung dient, um unerkannt an der Abwehr vorbeizuschlüpfen. Alternativ könnten die sekretierten Proteine die Abwehr aktiv unterdrücken. Sicher ist, dass die Gencluster dabei eine ganz entscheidende Rolle spielen - nun wollen die Forscher herausfinden, welche.

Originalveröffentlichung:

Jörg Kämper, Regine Kahmann, Michael Bölker, Li-Jun Ma, Thomas Brefort, Barry J. Saville, Flora Banuett, James W. Kronstad, Scott E. Gold, Olaf Müller, Michael H. Perlin, Han A. B. Wösten, Ronald de Vries, José Ruiz-Herrera1, Cristina G. Reynaga-Peña, Karen Snetselaar, Michael McCann, José Pérez-Martín, Michael Feldbrügge, Christoph W. Basse, Gero Steinberg, Jose I. Ibeas,William Holloman, Plinio Guzman, Mark Farman, Jason E. Stajich, Rafael Sentandreu, Juan M. González-Prieto, John C. Kennell, Lazaro Molina, Jan Schirawski, Artemio Mendoza-Mendoza, Doris Greilinger, Karin Münch, Nicole Rössel, Mario Scherer, Miroslav Vraneš,Oliver Ladendorf, Volker Vincon, Uta Fuchs, Björn Sandrock, Shaowu Meng, Eric C. H. Ho, Matt J. Cahill, Kylie J. Boyce, Jana Klose, Steven J. Klosterman, Heine J. Deelstra, Lucila Ortiz-Castellanos, Weixi Li, Patricia Sanchez-Alonso, Peter H. Schreier, Isolde Häuser-Hahn, Martin Vaupel, Edda Koopmann, Gabi Friedrich, Hartmut Voss, Thomas Schlüter, Jonathan Margolis, Darren Platt, Candace Swimmer, Andreas Gnirke, Feng Chen, Valentina Vysotskaia, Gertrud Mannhaupt, Ulrich Güldener, Martin Münsterkötter, Dirk Haase, Matthias Oesterheld, Hans-Werner Mewes, Evan W. Mauceli, David DeCaprio, Claire M.Wade, Jonathan Butler, Sarah Young, David B. Jaffe, Sarah Calvo, Chad Nusbaum, James Galagan & Bruce W. Birren
Insights from the genome of the biotrophic fungal plant pathogen Ustialgo maydis
Nature, 2. November 2006 (doi:10.1038/nature05248)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Cluster Gen Genom Pflanze Protein Wirt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics