Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Brennpunkt der Photosynthese

03.11.2006
Eine internationale Forschergruppe um einen Max-Planck-Wissenschaftler bestimmt Atoman-ordnung im Mangan-Cluster des Photosystems II

Kohle, Erdöl oder Erdgas: In allen fossilen Brennstoffen steckt die Energie des Sonnenlichts - mit Hilfe der Photosynthese wurde sie in energiereichen chemischen Verbindungen gespeichert.


Der Photosystem II Kristall (Bildmitte) ist kleiner als ein Stecknadelkopf. Um ihn besser positi-onieren zu können, bestrahlen die Wissenschaftler ihn mit grünem Licht. Von oben einströ-mendes Helium kühlt ihn auf minus 260 Grad Celsius. Der hochgebündelte und polarisierte Röntgenstrahl trifft von rechts unten auf die Probe. Die Spitze des mit 30 Elementen bestückten EXAFS-Detektors ragt aus dem linken Rand. Bild: Johannes Messinger / MPI für Bioanorganische Chemie


Atomanordnung im Herz des Photosystem II: Zu dem Cluster, an dem Wasser gespalten wird, verbinden sich vier Mangan-, fünf Sauerstoff- und ein Kalziumatom. Letzteres konnten die Forscher um Johannes Messinger noch nicht eindeutig lokalisieren, weshalb es in der Abbildung nicht dargestellt ist. Bild: Johannes Messinger/ MPI für Bioanorganische Chemie

Nun hat ein Forscher des Max-Planck-Instituts für Bioanorganische Chemie in Mülheim an der Ruhr gemeinsam mit Kollegen der TU und FU Berlin sowie des Lawrence Berkeley National Laboratory ein wichtiges Detail dieses Prozesses aufgeklärt: Die Wissenschaftler haben die Struktur des Komplexes im Photosystem II bestimmt, an dem mit der Energie des Sonnenlichts Wasser gespalten wird. Dabei entstehen neben molekularem Sauerstoff auch Protonen und chemisch gebundenen Elektronen, die sich im Prinzip zu Wasserstoff vereinigen lassen. Ließe sich dieser Prozess nachahmen, stünde ein unerschöpflicher kohlendioxidfreier Energieträger zur Verfügung. (Science, 3. November 2006).

Die künstliche Photosynthese könnte den Energieträger der Zukunft liefern - Wasserstoff. Doch dazu müssen Forscher vollständig verstehen, wie Pflanzen und photosynthetische Mikroorganismen Wasser mit der Energie des Sonnenlichtes spalten. Nur dann könnten sie diesen Prozess eines Tages nachahmen. Johannes Messinger, Privatdozent und Gruppenleiter am Mülheimer Max-Planck-Institut hat nun gemeinsam mit der Arbeitsgruppe von Athina Zouni an der TU Berlin, der Arbeitsgruppe von Wolfram Saenger an FU Berlin und der Arbeitsgruppe von Vittal K. Yachandra des Lawrence Berkeley National Laboratory einen wichtigen Beitrag dazu geleistet: Die Forscher haben die genaue Struktur des manganhaltigen Teils des Clusters bestimmt, an dem Wasser in seine Bestandteile zerlegt wird - dem entscheidenden Schritt der Photosynthese, der sich technisch bislang nicht effizient imitieren lässt.

Für ihre mehrere Jahre dauernde Untersuchungen haben die Wissenschaftler in der internationalen Kooperation die EXAFS-Messmethode (Extended X-ray Absorption Fine Structure) am Synchrotron im amerikanischen Stanford (SSRL) weiterentwickelt, die Art und Entfernung benachbarter Atome exakt bestimmt. So erhielten die Forscher einen Einblick, der den Kristallographen verwehrt blieb. Denn als diese früher versuchten, den Bauplan des Mangan-Clusters mit Hilfe der Röntgenstrukturanalyse zu enthüllen, zerstörten die notwendigen hohen Strahlendosen die Struktur des Clusters [Yano et.al. Proceedings of the National Academy of Sciences of the USA, 102 (2005) 12047-12052]. Um den Cluster diesmal davor zu bewahren, nutzten die Wissenschaftler die niedrigen Strahlendosen der EXAFS-Methode und tauschten bei ihren Messungen im Synchrotronstrahl die Kristalle nach kurzen Messzeiten immer wieder aus, sodass über die Jahre insgesamt mehr als 100 der in Berlin mühsam erzeugten Photosystem II Einkristalle vermessen wurden.

"Wir haben nun eine strukturelle Grundlage, um die verschiedenen Reaktionsschritte des Prozesses zu verstehen, mit dem die Natur mit Hilfe von Sonnenlicht Wasser spaltet", sagt Messinger. "Ein wichtiger Schritt hin zur Entwicklung künstlicher Katalysatoren zur regenerativen Wasserstoffgewinnung."

Originalveröffentlichung:

Junko Yano, Jan Kern, Kenneth Sauer, Matthew J. Latimer, Yulia Pushkar, Jacek Biesiadka, Bernhard Loll, Wolfram Saenger, Johannes Messinger, Athina Zouni, Vittal K. Yachandra - Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster, Science, 3. November 2006

In dem vollständigen Cluster sind vier Mangan-, ein Kalzium- und mindestens fünf Sauerstoff-Atome miteinander verknüpft. "Das Geheimnis steckt in ihrer geometrischen Anordnung - dafür wurden bislang mindestens 18 Modelle allein für die Anordnung der Mangan- und Sauerstoffatome diskutiert", sagt. Den Spekulationen über die richtige geometrische Anordnung haben die Wissenschaftler mit ihrer experimentellen und theoretischen Arbeit nun erst einmal ein Ende gesetzt. Demnach baut sich der Cluster aus drei miteinander verbundenen Rauten auf. Zwei der Rauten aus Mangan- und Sauerstoffatomen teilen sich eine Kante, so dass sowohl ein Mangan- als auch ein Sauerstoffatom jeweils drei Bindungspartner haben. Ein weiteres Manganatom ist sogar von vier brückenden Sauerstoffatomen umgeben, da an ihm die dritte Raute hängt. "Wir haben auch die Abstände zwischen den einzelnen Manganatomen bestimmt", sagt Johannes Messinger: Zuvor wussten die Wissenschaftler zwar, dass die Manganatome nicht alle denselben Abstand zueinander haben. Das internationale Forscherteam hat jetzt aber herausgefunden, zwischen welchen Mangan-Atome der Abstand kurz und zwischen welchen er lang ist.

Diese Erkenntnisse hat die internationale Forschergruppe sowohl aus experimentellen Untersuchungen - insbesondere mit EXAFS-Messungen - als auch aus theoretischen Betrachtungen abgeleitet. Am Computer haben die Forscher alle theoretisch möglichen Anordnungen der Atome mit den experimentellen Ergebnissen verglichen. Mit Erfolg: "Am Ende blieb nur eine Anordnung für die vier Manganatome mit den verbrückenden Sauerstoffatomen übrig", sagt Messinger. "Damit sind wir einen entscheidenden Schritt weiter." Jetzt bleiben nur noch zwei Details offen: Die neuen Befunde lassen drei Möglichkeiten zu, wie der Cluster im Protein des Photosystem II orientiert ist, woraus sich für das Kalzium vier mögliche Positionen ergeben.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Cluster Mangan Manganatom Photosynthese Photosystem Prozess Sauerstoffatom Sonnenlicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie