Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Brennpunkt der Photosynthese

03.11.2006
Eine internationale Forschergruppe um einen Max-Planck-Wissenschaftler bestimmt Atoman-ordnung im Mangan-Cluster des Photosystems II

Kohle, Erdöl oder Erdgas: In allen fossilen Brennstoffen steckt die Energie des Sonnenlichts - mit Hilfe der Photosynthese wurde sie in energiereichen chemischen Verbindungen gespeichert.


Der Photosystem II Kristall (Bildmitte) ist kleiner als ein Stecknadelkopf. Um ihn besser positi-onieren zu können, bestrahlen die Wissenschaftler ihn mit grünem Licht. Von oben einströ-mendes Helium kühlt ihn auf minus 260 Grad Celsius. Der hochgebündelte und polarisierte Röntgenstrahl trifft von rechts unten auf die Probe. Die Spitze des mit 30 Elementen bestückten EXAFS-Detektors ragt aus dem linken Rand. Bild: Johannes Messinger / MPI für Bioanorganische Chemie


Atomanordnung im Herz des Photosystem II: Zu dem Cluster, an dem Wasser gespalten wird, verbinden sich vier Mangan-, fünf Sauerstoff- und ein Kalziumatom. Letzteres konnten die Forscher um Johannes Messinger noch nicht eindeutig lokalisieren, weshalb es in der Abbildung nicht dargestellt ist. Bild: Johannes Messinger/ MPI für Bioanorganische Chemie

Nun hat ein Forscher des Max-Planck-Instituts für Bioanorganische Chemie in Mülheim an der Ruhr gemeinsam mit Kollegen der TU und FU Berlin sowie des Lawrence Berkeley National Laboratory ein wichtiges Detail dieses Prozesses aufgeklärt: Die Wissenschaftler haben die Struktur des Komplexes im Photosystem II bestimmt, an dem mit der Energie des Sonnenlichts Wasser gespalten wird. Dabei entstehen neben molekularem Sauerstoff auch Protonen und chemisch gebundenen Elektronen, die sich im Prinzip zu Wasserstoff vereinigen lassen. Ließe sich dieser Prozess nachahmen, stünde ein unerschöpflicher kohlendioxidfreier Energieträger zur Verfügung. (Science, 3. November 2006).

Die künstliche Photosynthese könnte den Energieträger der Zukunft liefern - Wasserstoff. Doch dazu müssen Forscher vollständig verstehen, wie Pflanzen und photosynthetische Mikroorganismen Wasser mit der Energie des Sonnenlichtes spalten. Nur dann könnten sie diesen Prozess eines Tages nachahmen. Johannes Messinger, Privatdozent und Gruppenleiter am Mülheimer Max-Planck-Institut hat nun gemeinsam mit der Arbeitsgruppe von Athina Zouni an der TU Berlin, der Arbeitsgruppe von Wolfram Saenger an FU Berlin und der Arbeitsgruppe von Vittal K. Yachandra des Lawrence Berkeley National Laboratory einen wichtigen Beitrag dazu geleistet: Die Forscher haben die genaue Struktur des manganhaltigen Teils des Clusters bestimmt, an dem Wasser in seine Bestandteile zerlegt wird - dem entscheidenden Schritt der Photosynthese, der sich technisch bislang nicht effizient imitieren lässt.

Für ihre mehrere Jahre dauernde Untersuchungen haben die Wissenschaftler in der internationalen Kooperation die EXAFS-Messmethode (Extended X-ray Absorption Fine Structure) am Synchrotron im amerikanischen Stanford (SSRL) weiterentwickelt, die Art und Entfernung benachbarter Atome exakt bestimmt. So erhielten die Forscher einen Einblick, der den Kristallographen verwehrt blieb. Denn als diese früher versuchten, den Bauplan des Mangan-Clusters mit Hilfe der Röntgenstrukturanalyse zu enthüllen, zerstörten die notwendigen hohen Strahlendosen die Struktur des Clusters [Yano et.al. Proceedings of the National Academy of Sciences of the USA, 102 (2005) 12047-12052]. Um den Cluster diesmal davor zu bewahren, nutzten die Wissenschaftler die niedrigen Strahlendosen der EXAFS-Methode und tauschten bei ihren Messungen im Synchrotronstrahl die Kristalle nach kurzen Messzeiten immer wieder aus, sodass über die Jahre insgesamt mehr als 100 der in Berlin mühsam erzeugten Photosystem II Einkristalle vermessen wurden.

"Wir haben nun eine strukturelle Grundlage, um die verschiedenen Reaktionsschritte des Prozesses zu verstehen, mit dem die Natur mit Hilfe von Sonnenlicht Wasser spaltet", sagt Messinger. "Ein wichtiger Schritt hin zur Entwicklung künstlicher Katalysatoren zur regenerativen Wasserstoffgewinnung."

Originalveröffentlichung:

Junko Yano, Jan Kern, Kenneth Sauer, Matthew J. Latimer, Yulia Pushkar, Jacek Biesiadka, Bernhard Loll, Wolfram Saenger, Johannes Messinger, Athina Zouni, Vittal K. Yachandra - Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster, Science, 3. November 2006

In dem vollständigen Cluster sind vier Mangan-, ein Kalzium- und mindestens fünf Sauerstoff-Atome miteinander verknüpft. "Das Geheimnis steckt in ihrer geometrischen Anordnung - dafür wurden bislang mindestens 18 Modelle allein für die Anordnung der Mangan- und Sauerstoffatome diskutiert", sagt. Den Spekulationen über die richtige geometrische Anordnung haben die Wissenschaftler mit ihrer experimentellen und theoretischen Arbeit nun erst einmal ein Ende gesetzt. Demnach baut sich der Cluster aus drei miteinander verbundenen Rauten auf. Zwei der Rauten aus Mangan- und Sauerstoffatomen teilen sich eine Kante, so dass sowohl ein Mangan- als auch ein Sauerstoffatom jeweils drei Bindungspartner haben. Ein weiteres Manganatom ist sogar von vier brückenden Sauerstoffatomen umgeben, da an ihm die dritte Raute hängt. "Wir haben auch die Abstände zwischen den einzelnen Manganatomen bestimmt", sagt Johannes Messinger: Zuvor wussten die Wissenschaftler zwar, dass die Manganatome nicht alle denselben Abstand zueinander haben. Das internationale Forscherteam hat jetzt aber herausgefunden, zwischen welchen Mangan-Atome der Abstand kurz und zwischen welchen er lang ist.

Diese Erkenntnisse hat die internationale Forschergruppe sowohl aus experimentellen Untersuchungen - insbesondere mit EXAFS-Messungen - als auch aus theoretischen Betrachtungen abgeleitet. Am Computer haben die Forscher alle theoretisch möglichen Anordnungen der Atome mit den experimentellen Ergebnissen verglichen. Mit Erfolg: "Am Ende blieb nur eine Anordnung für die vier Manganatome mit den verbrückenden Sauerstoffatomen übrig", sagt Messinger. "Damit sind wir einen entscheidenden Schritt weiter." Jetzt bleiben nur noch zwei Details offen: Die neuen Befunde lassen drei Möglichkeiten zu, wie der Cluster im Protein des Photosystem II orientiert ist, woraus sich für das Kalzium vier mögliche Positionen ergeben.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Cluster Mangan Manganatom Photosynthese Photosystem Prozess Sauerstoffatom Sonnenlicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften