Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Brennpunkt der Photosynthese

03.11.2006
Eine internationale Forschergruppe um einen Max-Planck-Wissenschaftler bestimmt Atoman-ordnung im Mangan-Cluster des Photosystems II

Kohle, Erdöl oder Erdgas: In allen fossilen Brennstoffen steckt die Energie des Sonnenlichts - mit Hilfe der Photosynthese wurde sie in energiereichen chemischen Verbindungen gespeichert.


Der Photosystem II Kristall (Bildmitte) ist kleiner als ein Stecknadelkopf. Um ihn besser positi-onieren zu können, bestrahlen die Wissenschaftler ihn mit grünem Licht. Von oben einströ-mendes Helium kühlt ihn auf minus 260 Grad Celsius. Der hochgebündelte und polarisierte Röntgenstrahl trifft von rechts unten auf die Probe. Die Spitze des mit 30 Elementen bestückten EXAFS-Detektors ragt aus dem linken Rand. Bild: Johannes Messinger / MPI für Bioanorganische Chemie


Atomanordnung im Herz des Photosystem II: Zu dem Cluster, an dem Wasser gespalten wird, verbinden sich vier Mangan-, fünf Sauerstoff- und ein Kalziumatom. Letzteres konnten die Forscher um Johannes Messinger noch nicht eindeutig lokalisieren, weshalb es in der Abbildung nicht dargestellt ist. Bild: Johannes Messinger/ MPI für Bioanorganische Chemie

Nun hat ein Forscher des Max-Planck-Instituts für Bioanorganische Chemie in Mülheim an der Ruhr gemeinsam mit Kollegen der TU und FU Berlin sowie des Lawrence Berkeley National Laboratory ein wichtiges Detail dieses Prozesses aufgeklärt: Die Wissenschaftler haben die Struktur des Komplexes im Photosystem II bestimmt, an dem mit der Energie des Sonnenlichts Wasser gespalten wird. Dabei entstehen neben molekularem Sauerstoff auch Protonen und chemisch gebundenen Elektronen, die sich im Prinzip zu Wasserstoff vereinigen lassen. Ließe sich dieser Prozess nachahmen, stünde ein unerschöpflicher kohlendioxidfreier Energieträger zur Verfügung. (Science, 3. November 2006).

Die künstliche Photosynthese könnte den Energieträger der Zukunft liefern - Wasserstoff. Doch dazu müssen Forscher vollständig verstehen, wie Pflanzen und photosynthetische Mikroorganismen Wasser mit der Energie des Sonnenlichtes spalten. Nur dann könnten sie diesen Prozess eines Tages nachahmen. Johannes Messinger, Privatdozent und Gruppenleiter am Mülheimer Max-Planck-Institut hat nun gemeinsam mit der Arbeitsgruppe von Athina Zouni an der TU Berlin, der Arbeitsgruppe von Wolfram Saenger an FU Berlin und der Arbeitsgruppe von Vittal K. Yachandra des Lawrence Berkeley National Laboratory einen wichtigen Beitrag dazu geleistet: Die Forscher haben die genaue Struktur des manganhaltigen Teils des Clusters bestimmt, an dem Wasser in seine Bestandteile zerlegt wird - dem entscheidenden Schritt der Photosynthese, der sich technisch bislang nicht effizient imitieren lässt.

Für ihre mehrere Jahre dauernde Untersuchungen haben die Wissenschaftler in der internationalen Kooperation die EXAFS-Messmethode (Extended X-ray Absorption Fine Structure) am Synchrotron im amerikanischen Stanford (SSRL) weiterentwickelt, die Art und Entfernung benachbarter Atome exakt bestimmt. So erhielten die Forscher einen Einblick, der den Kristallographen verwehrt blieb. Denn als diese früher versuchten, den Bauplan des Mangan-Clusters mit Hilfe der Röntgenstrukturanalyse zu enthüllen, zerstörten die notwendigen hohen Strahlendosen die Struktur des Clusters [Yano et.al. Proceedings of the National Academy of Sciences of the USA, 102 (2005) 12047-12052]. Um den Cluster diesmal davor zu bewahren, nutzten die Wissenschaftler die niedrigen Strahlendosen der EXAFS-Methode und tauschten bei ihren Messungen im Synchrotronstrahl die Kristalle nach kurzen Messzeiten immer wieder aus, sodass über die Jahre insgesamt mehr als 100 der in Berlin mühsam erzeugten Photosystem II Einkristalle vermessen wurden.

"Wir haben nun eine strukturelle Grundlage, um die verschiedenen Reaktionsschritte des Prozesses zu verstehen, mit dem die Natur mit Hilfe von Sonnenlicht Wasser spaltet", sagt Messinger. "Ein wichtiger Schritt hin zur Entwicklung künstlicher Katalysatoren zur regenerativen Wasserstoffgewinnung."

Originalveröffentlichung:

Junko Yano, Jan Kern, Kenneth Sauer, Matthew J. Latimer, Yulia Pushkar, Jacek Biesiadka, Bernhard Loll, Wolfram Saenger, Johannes Messinger, Athina Zouni, Vittal K. Yachandra - Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster, Science, 3. November 2006

In dem vollständigen Cluster sind vier Mangan-, ein Kalzium- und mindestens fünf Sauerstoff-Atome miteinander verknüpft. "Das Geheimnis steckt in ihrer geometrischen Anordnung - dafür wurden bislang mindestens 18 Modelle allein für die Anordnung der Mangan- und Sauerstoffatome diskutiert", sagt. Den Spekulationen über die richtige geometrische Anordnung haben die Wissenschaftler mit ihrer experimentellen und theoretischen Arbeit nun erst einmal ein Ende gesetzt. Demnach baut sich der Cluster aus drei miteinander verbundenen Rauten auf. Zwei der Rauten aus Mangan- und Sauerstoffatomen teilen sich eine Kante, so dass sowohl ein Mangan- als auch ein Sauerstoffatom jeweils drei Bindungspartner haben. Ein weiteres Manganatom ist sogar von vier brückenden Sauerstoffatomen umgeben, da an ihm die dritte Raute hängt. "Wir haben auch die Abstände zwischen den einzelnen Manganatomen bestimmt", sagt Johannes Messinger: Zuvor wussten die Wissenschaftler zwar, dass die Manganatome nicht alle denselben Abstand zueinander haben. Das internationale Forscherteam hat jetzt aber herausgefunden, zwischen welchen Mangan-Atome der Abstand kurz und zwischen welchen er lang ist.

Diese Erkenntnisse hat die internationale Forschergruppe sowohl aus experimentellen Untersuchungen - insbesondere mit EXAFS-Messungen - als auch aus theoretischen Betrachtungen abgeleitet. Am Computer haben die Forscher alle theoretisch möglichen Anordnungen der Atome mit den experimentellen Ergebnissen verglichen. Mit Erfolg: "Am Ende blieb nur eine Anordnung für die vier Manganatome mit den verbrückenden Sauerstoffatomen übrig", sagt Messinger. "Damit sind wir einen entscheidenden Schritt weiter." Jetzt bleiben nur noch zwei Details offen: Die neuen Befunde lassen drei Möglichkeiten zu, wie der Cluster im Protein des Photosystem II orientiert ist, woraus sich für das Kalzium vier mögliche Positionen ergeben.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Cluster Mangan Manganatom Photosynthese Photosystem Prozess Sauerstoffatom Sonnenlicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau