Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gewundene Moleküle

26.10.2006
Groß und gefaltet wie ein Protein - aber ganz und gar synthetisch

Die physiologischen Funktionen von Proteinen beruhen auf deren Faltung zu einer speziellen räumlichen Struktur (Tertiärstruktur): Enzyme und ihr Substrat müssen zueinander passen wie der viel zitierte Schlüssel zum Schloss. Wie sich inzwischen herausstellte, sind aber nicht nur große Biomoleküle zu einer stabilen, definierten Faltung in der Lage, sondern auch synthetische Moleküle.

Diese so genannten Foldamere können sogar die biologische Funktion der Proteine nachahmen, deren Form sie nachempfunden sind. Ihre Größe und Komplexität waren bisher allerdings recht begrenzt. Französische Forscher haben nun ein komplex gefaltetes, ausschließlich aus nichtnatürlichen Bausteinen aufgebautes Molekül hergestellt, dessen Abmessungen den Tertiärstrukturen kleinerer Proteine entsprechen.

Das Team um Ivan Huc wollte beim Design ihres Foldamers nicht auf das Bauprinzip von Proteinen zurückgreifen, da eine Synthese langer Ketten aus kleinen Einzelbausteinen schwierig ist. Verzweigte Strukturen hieß ihre Alternative. Dabei griffen sie ein wichtiges Strukturelement von Proteinen auf: die Helix. Die Forscher verknüpften acht Chinolin-Einheiten (stickstoffhaltige aromatische Sechsringe mit einer gemeinsamen Kante) zu einer Kette. Ein solches Octamer windet sich zu einer Helix. Je zwei dieser Octamere verbrückten sie über eine spezielle Verzweigungsstelle. Diese fügt sich so gut zwischen die beiden Octamere ein, dass eine durchgehende, stabile Helix entsteht. Über ihre Verzweigungsstellen lassen sich nun zwei solcher helikalen Gebilde seitlich miteinander verknüpfen. Die beiden Helices ordnen sich dabei nicht parallel zueinander an, sondern im rechten Winkel.

Helices können sich rechts oder links herum winden. Bei Peptiden wird der Drehsinn durch die räumliche Struktur der einzelnen Bausteine eindeutig definiert. Bei der Synthese der Vierfach-Octamere entstehen dagegen gleichberechtigt rechts- und linksgewundene Helices. Welche Präferenzen die Helices bei der Paarung zeigen, ist abhängig vom Lösungsmittel: In Aromaten ist die Paarung zweier gleichgerichteter Helices deutlich bevorzugt (70%), in chlorierten Kohlenwasserstoffen entstehen zu 93% Pärchen mit gegengerichtetem Drehsinn. Bei einem Wechsel des Lösungsmittels ändern die Helices ihren Drehsinn, bis die Präferenzen wieder stimmen. "Dies beweist, dass die beiden Helices, genau wie in einem gefalteten Protein, in starke Wechselwirkungen treten," sagt Huc. "Unser abiotisches Foldamer ist das erste seiner Art und zeigt, dass es möglich ist, gefaltete Moleküle zu synthetisieren, die von ihrer Größe und strukturellen Komplexität her die Tertiärstruktur von Proteinen nachahmen, aber ausschließlich aus nichtnatürlichen Bausteinen bestehen." Ziel ist die Herstellung künstlicher Gebilde mit definierten Bindungsstellen und eindeutig positionierten katalytischen Gruppen für die kontrollierte Reaktion mit spezifischen Substraten.

Angewandte Chemie: Presseinfo 42/2006

Autor: Ivan Huc, Institut Européen de Chimie et Biologie, Pessac (France), http://www.iecb.u-bordeaux.fr/index.php?id=66

Angewandte Chemie, doi: 10.1002/ange.200603390

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.gdch.de
http://presse.angewandte.de

Weitere Berichte zu: Baustein Drehsinn Helices Molekül Octamer Protein Tertiärstruktur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten