Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomedizin aus der Wüste - Kamele liefern leuchtende Nanosonden für die Forschung

24.10.2006
Antikörper sind die Schlüsselreagenzien zum Nachweis biologischer Moleküle und Strukturen in Forschung, Diagnostik und Therapie. Aufgrund ihres hoch variablen Aufbaus lassen sich Antikörper gegen ein breites Spektrum unterschiedlichster Antigene erzeugen.

Für den Einsatz in lebenden Zellen aber sind konventionelle Antikörper zu groß und instabil. Ein internationales Forscherteam um Professor Heinrich Leonhardt, am Biozentrum der Ludwig-Maximilians-Universität (LMU) München, entwickelte jetzt mit Erfolg sehr viel kleinere Moleküle zum Nachweis von Antigenen in lebenden Zellen. Als Vorlage dieser Moleküle dienten einzelkettige Antikörper von Kamelen und den nahe verwandten Alpakas.

Wie in der online-Ausgabe von "Nature Methods" berichtet, entstehen durch die Fusion einer Untereinheit der Kamelantikörper mit fluoreszierenden Proteinen extrem kleine "Chromobodies", mit denen erstmals Antigene und deren Dynamik in lebenden Zellen nachgewiesen werden können. "Der Ansatz hat das Potential, die Forschung in Bereichen der Biomedizin, Zellbiologie und Proteomik zu revolutionieren", so Leonhardt. "Diese neue Technologie bietet zudem eine interessante Alternative zur traditionellen Antikörperherstellung im Tier".

Antikörper gehören zum Abwehrarsenal des Immunsystems höherer Wirbeltiere und sind dabei wahre Verwandlungskünstler. Jedes dieser Immunmoleküle erkennt hoch spezifisch eine andere Struktur. Als wichtiges Werkzeug der biomedizinischen Forschung und Diagnostik hat sich deshalb die seit Jahrzehnten praktizierte Antikörperfärbung etabliert. Dabei werden gezielt Antikörper für eine gesuchte biomolekulare Struktur produziert und mit einem Marker gekoppelt. Ist die entsprechende Struktur in einer Zelle oder einem Gewebe vorhanden, wird der Antikörper daran binden, was wiederum über den Marker nachgewiesen werden kann. Mit dieser Methode können zwar einzelne Schnappschüsse gewonnen, aber keine dynamischen Prozesse in lebenden Zellen untersucht werden.

Zunehmend interessiert sich die Wissenschaft aber auch für die Dynamik zellulärer Prozesse: Es geht nicht mehr nur um die Frage, wo und in welcher Menge sich ein Protein zu einem gegebenen Zeitpunkt in der Zelle befindet. Vielmehr soll jetzt geklärt werden, wie sich Proteine in der Zelle bewegen und dabei verändert werden. Die bisher genutzten Antikörper - meist in Kaninchen oder Mäusen erzeugt - werden in lebenden Zellen aber nicht korrekt zusammengesetzt und sind somit nicht aktiv. Diese konventionellen Antikörper bestehen aus vier Bestandteilen: zwei identischen so genannten schweren Ketten und zwei identischen leichten Ketten, die zusammen eine Y-förmige Struktur bilden. Dabei sind aber nur Teilbereiche an der eigentlichen Antigenerkennung beteiligt.

"Kamele und Alpakas besitzen jedoch zusätzlich wesentlich kleinere, einzelkettige Antikörper", berichtet Leonhardt. "Für unseren Ansatz haben wir wiederum nur die antigenbindende Domäne dieser einzelkettigen Antikörper verwendet, die insgesamt zehnmal kleiner ist als konventionelle Antikörper und daher auch Nanobodies - nach dem griechischen Wort 'nanos' für 'Zwerg' - genannt werden. Durch Fusion mit fluoreszierenden Proteinen haben wir jetzt leuchtende Nanosonden, so genannte 'Chromobodies' erzeugt. Dank ihrer geringen Größe und ihrer Stabilität können Chromobodies sogar in lebenden Zellen eingesetzt werden. Diese leuchtenden Designermoleküle können von den Zellen selbst produziert werden, heften sich dort an die entsprechenden Antigene und verfolgen deren Weg und Schicksal in lebenden Zellen." Dabei beschränkt sich das Verfahren nicht nur auf Proteine. Es können jetzt ebenso deren chemische Modifikationen und andere Zellkomponenten untersucht werden, was bislang unmöglich war.

Aber auch auf anderer Ebene ergeben sich neue Möglichkeiten. Bislang werden konventionelle Antikörper in Tieren, vor allem in Kaninchen, Mäusen, Ratten, Hühnern, Ziegen und Schafen, hergestellt. Die Chromobody-Technologie bietet hierzu eine viel versprechende Alternative. Die Antikörpervielfalt kann nun dank der einfachen Struktur von Chromobodies in künstlichen, molekularen Bibliotheken angelegt werden. "Während meiner Doktorarbeit habe ich selbst noch Antikörper in Kaninchen produziert", berichtet Dr. Ulrich Rothbauer, Erstautor der Veröffentlichung und damit maßgeblich an der Studie beteiligt. "Deshalb freue ich mich umso mehr, dass wir jetzt eine echte und äußerst effiziente Alternative zum Tiereinsatz entwickeln konnten. Wir haben mittlerweile Bibliotheken mit Milliarden solcher Chromobodies angelegt und konnten daraus bereits spezifische Sonden für verschiedene biologische Zielstrukturen gewinnen."

Publikation:
"Targeting and Tracing of Antigens in Living Cells with Fluorescent Nanobodies", Ulrich Rothbauer, Kourosh Zolghadr, Sergei Tillib, Danny Nowak, Lothar Schermelleh, Anja Gahl, Natalija Backmann, Katja Conrath, Serge Muyldermans, M. Cristina Cardoso, and Heinrich Leonhardt, Nature Methods, online am 23. Oktober 2006
Ansprechpartner:
Prof. Dr. Heinrich Leonhardt
Biozentrum der LMU
Tel.: 089/2180-74232
Fax: 089/2180-74236
E-Mail: H.Leonhardt@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Antigene Antikörper Biomedizin Chromobodies Kamel Kaninchen Molekül Nanosonden Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie