Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomedizin aus der Wüste - Kamele liefern leuchtende Nanosonden für die Forschung

24.10.2006
Antikörper sind die Schlüsselreagenzien zum Nachweis biologischer Moleküle und Strukturen in Forschung, Diagnostik und Therapie. Aufgrund ihres hoch variablen Aufbaus lassen sich Antikörper gegen ein breites Spektrum unterschiedlichster Antigene erzeugen.

Für den Einsatz in lebenden Zellen aber sind konventionelle Antikörper zu groß und instabil. Ein internationales Forscherteam um Professor Heinrich Leonhardt, am Biozentrum der Ludwig-Maximilians-Universität (LMU) München, entwickelte jetzt mit Erfolg sehr viel kleinere Moleküle zum Nachweis von Antigenen in lebenden Zellen. Als Vorlage dieser Moleküle dienten einzelkettige Antikörper von Kamelen und den nahe verwandten Alpakas.

Wie in der online-Ausgabe von "Nature Methods" berichtet, entstehen durch die Fusion einer Untereinheit der Kamelantikörper mit fluoreszierenden Proteinen extrem kleine "Chromobodies", mit denen erstmals Antigene und deren Dynamik in lebenden Zellen nachgewiesen werden können. "Der Ansatz hat das Potential, die Forschung in Bereichen der Biomedizin, Zellbiologie und Proteomik zu revolutionieren", so Leonhardt. "Diese neue Technologie bietet zudem eine interessante Alternative zur traditionellen Antikörperherstellung im Tier".

Antikörper gehören zum Abwehrarsenal des Immunsystems höherer Wirbeltiere und sind dabei wahre Verwandlungskünstler. Jedes dieser Immunmoleküle erkennt hoch spezifisch eine andere Struktur. Als wichtiges Werkzeug der biomedizinischen Forschung und Diagnostik hat sich deshalb die seit Jahrzehnten praktizierte Antikörperfärbung etabliert. Dabei werden gezielt Antikörper für eine gesuchte biomolekulare Struktur produziert und mit einem Marker gekoppelt. Ist die entsprechende Struktur in einer Zelle oder einem Gewebe vorhanden, wird der Antikörper daran binden, was wiederum über den Marker nachgewiesen werden kann. Mit dieser Methode können zwar einzelne Schnappschüsse gewonnen, aber keine dynamischen Prozesse in lebenden Zellen untersucht werden.

Zunehmend interessiert sich die Wissenschaft aber auch für die Dynamik zellulärer Prozesse: Es geht nicht mehr nur um die Frage, wo und in welcher Menge sich ein Protein zu einem gegebenen Zeitpunkt in der Zelle befindet. Vielmehr soll jetzt geklärt werden, wie sich Proteine in der Zelle bewegen und dabei verändert werden. Die bisher genutzten Antikörper - meist in Kaninchen oder Mäusen erzeugt - werden in lebenden Zellen aber nicht korrekt zusammengesetzt und sind somit nicht aktiv. Diese konventionellen Antikörper bestehen aus vier Bestandteilen: zwei identischen so genannten schweren Ketten und zwei identischen leichten Ketten, die zusammen eine Y-förmige Struktur bilden. Dabei sind aber nur Teilbereiche an der eigentlichen Antigenerkennung beteiligt.

"Kamele und Alpakas besitzen jedoch zusätzlich wesentlich kleinere, einzelkettige Antikörper", berichtet Leonhardt. "Für unseren Ansatz haben wir wiederum nur die antigenbindende Domäne dieser einzelkettigen Antikörper verwendet, die insgesamt zehnmal kleiner ist als konventionelle Antikörper und daher auch Nanobodies - nach dem griechischen Wort 'nanos' für 'Zwerg' - genannt werden. Durch Fusion mit fluoreszierenden Proteinen haben wir jetzt leuchtende Nanosonden, so genannte 'Chromobodies' erzeugt. Dank ihrer geringen Größe und ihrer Stabilität können Chromobodies sogar in lebenden Zellen eingesetzt werden. Diese leuchtenden Designermoleküle können von den Zellen selbst produziert werden, heften sich dort an die entsprechenden Antigene und verfolgen deren Weg und Schicksal in lebenden Zellen." Dabei beschränkt sich das Verfahren nicht nur auf Proteine. Es können jetzt ebenso deren chemische Modifikationen und andere Zellkomponenten untersucht werden, was bislang unmöglich war.

Aber auch auf anderer Ebene ergeben sich neue Möglichkeiten. Bislang werden konventionelle Antikörper in Tieren, vor allem in Kaninchen, Mäusen, Ratten, Hühnern, Ziegen und Schafen, hergestellt. Die Chromobody-Technologie bietet hierzu eine viel versprechende Alternative. Die Antikörpervielfalt kann nun dank der einfachen Struktur von Chromobodies in künstlichen, molekularen Bibliotheken angelegt werden. "Während meiner Doktorarbeit habe ich selbst noch Antikörper in Kaninchen produziert", berichtet Dr. Ulrich Rothbauer, Erstautor der Veröffentlichung und damit maßgeblich an der Studie beteiligt. "Deshalb freue ich mich umso mehr, dass wir jetzt eine echte und äußerst effiziente Alternative zum Tiereinsatz entwickeln konnten. Wir haben mittlerweile Bibliotheken mit Milliarden solcher Chromobodies angelegt und konnten daraus bereits spezifische Sonden für verschiedene biologische Zielstrukturen gewinnen."

Publikation:
"Targeting and Tracing of Antigens in Living Cells with Fluorescent Nanobodies", Ulrich Rothbauer, Kourosh Zolghadr, Sergei Tillib, Danny Nowak, Lothar Schermelleh, Anja Gahl, Natalija Backmann, Katja Conrath, Serge Muyldermans, M. Cristina Cardoso, and Heinrich Leonhardt, Nature Methods, online am 23. Oktober 2006
Ansprechpartner:
Prof. Dr. Heinrich Leonhardt
Biozentrum der LMU
Tel.: 089/2180-74232
Fax: 089/2180-74236
E-Mail: H.Leonhardt@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Antigene Antikörper Biomedizin Chromobodies Kamel Kaninchen Molekül Nanosonden Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften