Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwimmer mit Igelfrisur

23.10.2006
Forscherteam klärt mit Computersimulationen, auf welche Weise Zellen besonders gut an Gefäßwänden haften können

Mit Hilfe aufwändiger Computersimulationen haben Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der Universität Heidelberg herausgefunden, wie Form und Verteilung von bestimmten Haftbereichen auf der Zelle ihre Bindung in Blutgefäßen beeinflussen. Demnach sind nicht deren Zahl oder Größe die wichtigsten Parameter, vielmehr ist es am entscheidendsten, wie weit sie aus der Zelloberfläche herausragen. Eine entsprechende "Igelfrisur" wenden weiße Blutkörperchen und Malaria-infizierte rote Blutkörperchen tatsächlich als Haftstrategie an (Physical Review Letters, 28. September 2006).


Abgebildet ist das Computermodell für die Zellhaftung im hydrodynamischen Fluss. Es besteht aus einer Kugel mit zufällig verteilten Adhäsionsflecken und einem Substrat mit den dazu komplementären Partnern. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Das Blut ist das universelle Transportmittel für verschiedenartige Zellen in unserem Körper. Ihre Bewegung wird durch hydrodynamische Kräfte bestimmt. Die Zellen "ankern" dann an der Gefäßwand des Zielgewebes mit Hilfe spezieller Haftmoleküle, auch Rezeptoren genannt, die sich in vielen Fällen auf der Zelloberfläche in nanometergroßen Haftflecken sammeln. Der Vorgang der Anhaftung basiert auf dem Schlüssel-Schloss-Prinzip, das heißt, ein bestimmtes Haftmolekül bindet in der Regel nur ganz spezielle Partner. So wird garantiert, dass die Zellen nur dort hängen bleiben, wo sie ihre biologische Funktion erfüllen sollen.

Diese Prozesse sind von hoher medizinischer Relevanz; so haften Malaria-infizierte rote Blutkörperchen an Gefäßwänden, um ihrer Vernichtung in der Milz zu entkommen, und weiße Blutkörperchen docken bei ihren Patrouillengängen an den Gefäßwänden an, um anschließend im angrenzenden Gewebe Fremdkörper aufzuspüren (Vgl. MPG-Presseinformation [1]). Zu den "wandernden Klebezellen" gehören auch Stammzellen, die aus dem Knochenmark zu ihrem Zielgewebe ziehen, sowie Krebszellen, die im Körper metastasieren.

Um diese Vorgänge besser zu verstehen, muss man das Zusammenspiel von Hydrodynamik und molekularer Bindung der Haftflecken im Detail nachvollziehen. Die Wissenschaftler vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und von der Universität Heidelberg haben zu diesem Zweck ein Computermodell entwickelt, das systematisch untersucht, wie Dichte, Größe und Höhe der Rezeptoransammlungen die Haftung beeinflussen. In Millionen von Computerexperimenten ermittelten die Forscher, wie lange es in Abhängigkeit von diesen Größen dauert, bis der Haftfleck einen Partner auf dem Zielgewebe gefunden hat, während ein Flüssigkeitsstrom die Zelle nach den Gesetzen der Hydrodynamik bewegt. Diese Rechnungen sind sehr aufwändig, weil sie pro Zelle hunderte Flecken berücksichtigen müssen.

In den ersten Simulationen, die den Einfluss der Fließgeschwindigkeit auf die Haftung untersuchten, zeigte sich: Je schneller die Flüssigkeit fließt, desto rascher finden sich auch die Bindungspartner, da die Zelle eine größere Fläche abtasten kann. Anschließend variierten die Forscher die Flecken-Dichte und stellten fest, dass jenseits eines Schwellenwertes von einigen Hundert Rezeptorbereichen pro Zelle eine weitere Beschleunigung der Bindungsentstehung nicht mehr eintritt, denn von da ab überschneiden sich die durch thermische Zufallsbewegung entstehenden effektiven Wirkungsradien der Flecken. Ähnlich verhält es sich mit der Größe der Haftbereiche, der offenbar nur eine untergeordnete Rolle für die Bindungseffizienz spielt.

Verändert man aber die Höhe, mit der die Haftflecken über die Zellmembran hinausstehen, kommt man zu einem überraschenden Ergebnis: Bereits kleine Erhöhungen bewirken eine erheblich schnellere Bindung. Diesen Effekt nutzen weiße Blutkörperchen, indem sie sich mit Hunderten von Ausstülpungen bedecken, den so genannten "Mikrovilli", die etwa 350 Nanometer über die Zelloberfläche ragen, was immerhin fast vier Prozent des Zelldurchmessers ausmacht. Auch Malaria-infizierte rote Blutkörperchen verwenden die "Igelfrisur"-Strategie. Auf ihrer Oberfläche befinden sich 20 Nanometer hohe "Knospen".

Die Wissenschaftler vermuten, dass sie mit ihren Simulationen ein allgemeines biologisches Designprinzip aufgedeckt haben, das auch in anderen hydrodynamischen Zusammenhängen auftritt - beispielsweise bei Bakterien, die sich in medizinischen Durchflussgeräten wie Kathetern oder Dialysen ansammeln. Die entwickelte Software wird es in Zukunft erlauben, solche Situationen viel genauer als bisher zu untersuchen und ist ein weiterer Schritt auf dem Weg zu einer "berechneten" Biologie.

Originalveröffentlichung:

Christian Korn und Ulrich S. Schwarz
Efficiency of initiating cell adhesion in hydrodynamic flow
Phys. Rev. Lett. 97, 28. September 2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blutkörperchen Gefäßwände Haftfleck Zelle Zelloberfläche Zielgewebe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise