Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwimmer mit Igelfrisur

23.10.2006
Forscherteam klärt mit Computersimulationen, auf welche Weise Zellen besonders gut an Gefäßwänden haften können

Mit Hilfe aufwändiger Computersimulationen haben Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der Universität Heidelberg herausgefunden, wie Form und Verteilung von bestimmten Haftbereichen auf der Zelle ihre Bindung in Blutgefäßen beeinflussen. Demnach sind nicht deren Zahl oder Größe die wichtigsten Parameter, vielmehr ist es am entscheidendsten, wie weit sie aus der Zelloberfläche herausragen. Eine entsprechende "Igelfrisur" wenden weiße Blutkörperchen und Malaria-infizierte rote Blutkörperchen tatsächlich als Haftstrategie an (Physical Review Letters, 28. September 2006).


Abgebildet ist das Computermodell für die Zellhaftung im hydrodynamischen Fluss. Es besteht aus einer Kugel mit zufällig verteilten Adhäsionsflecken und einem Substrat mit den dazu komplementären Partnern. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Das Blut ist das universelle Transportmittel für verschiedenartige Zellen in unserem Körper. Ihre Bewegung wird durch hydrodynamische Kräfte bestimmt. Die Zellen "ankern" dann an der Gefäßwand des Zielgewebes mit Hilfe spezieller Haftmoleküle, auch Rezeptoren genannt, die sich in vielen Fällen auf der Zelloberfläche in nanometergroßen Haftflecken sammeln. Der Vorgang der Anhaftung basiert auf dem Schlüssel-Schloss-Prinzip, das heißt, ein bestimmtes Haftmolekül bindet in der Regel nur ganz spezielle Partner. So wird garantiert, dass die Zellen nur dort hängen bleiben, wo sie ihre biologische Funktion erfüllen sollen.

Diese Prozesse sind von hoher medizinischer Relevanz; so haften Malaria-infizierte rote Blutkörperchen an Gefäßwänden, um ihrer Vernichtung in der Milz zu entkommen, und weiße Blutkörperchen docken bei ihren Patrouillengängen an den Gefäßwänden an, um anschließend im angrenzenden Gewebe Fremdkörper aufzuspüren (Vgl. MPG-Presseinformation [1]). Zu den "wandernden Klebezellen" gehören auch Stammzellen, die aus dem Knochenmark zu ihrem Zielgewebe ziehen, sowie Krebszellen, die im Körper metastasieren.

Um diese Vorgänge besser zu verstehen, muss man das Zusammenspiel von Hydrodynamik und molekularer Bindung der Haftflecken im Detail nachvollziehen. Die Wissenschaftler vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und von der Universität Heidelberg haben zu diesem Zweck ein Computermodell entwickelt, das systematisch untersucht, wie Dichte, Größe und Höhe der Rezeptoransammlungen die Haftung beeinflussen. In Millionen von Computerexperimenten ermittelten die Forscher, wie lange es in Abhängigkeit von diesen Größen dauert, bis der Haftfleck einen Partner auf dem Zielgewebe gefunden hat, während ein Flüssigkeitsstrom die Zelle nach den Gesetzen der Hydrodynamik bewegt. Diese Rechnungen sind sehr aufwändig, weil sie pro Zelle hunderte Flecken berücksichtigen müssen.

In den ersten Simulationen, die den Einfluss der Fließgeschwindigkeit auf die Haftung untersuchten, zeigte sich: Je schneller die Flüssigkeit fließt, desto rascher finden sich auch die Bindungspartner, da die Zelle eine größere Fläche abtasten kann. Anschließend variierten die Forscher die Flecken-Dichte und stellten fest, dass jenseits eines Schwellenwertes von einigen Hundert Rezeptorbereichen pro Zelle eine weitere Beschleunigung der Bindungsentstehung nicht mehr eintritt, denn von da ab überschneiden sich die durch thermische Zufallsbewegung entstehenden effektiven Wirkungsradien der Flecken. Ähnlich verhält es sich mit der Größe der Haftbereiche, der offenbar nur eine untergeordnete Rolle für die Bindungseffizienz spielt.

Verändert man aber die Höhe, mit der die Haftflecken über die Zellmembran hinausstehen, kommt man zu einem überraschenden Ergebnis: Bereits kleine Erhöhungen bewirken eine erheblich schnellere Bindung. Diesen Effekt nutzen weiße Blutkörperchen, indem sie sich mit Hunderten von Ausstülpungen bedecken, den so genannten "Mikrovilli", die etwa 350 Nanometer über die Zelloberfläche ragen, was immerhin fast vier Prozent des Zelldurchmessers ausmacht. Auch Malaria-infizierte rote Blutkörperchen verwenden die "Igelfrisur"-Strategie. Auf ihrer Oberfläche befinden sich 20 Nanometer hohe "Knospen".

Die Wissenschaftler vermuten, dass sie mit ihren Simulationen ein allgemeines biologisches Designprinzip aufgedeckt haben, das auch in anderen hydrodynamischen Zusammenhängen auftritt - beispielsweise bei Bakterien, die sich in medizinischen Durchflussgeräten wie Kathetern oder Dialysen ansammeln. Die entwickelte Software wird es in Zukunft erlauben, solche Situationen viel genauer als bisher zu untersuchen und ist ein weiterer Schritt auf dem Weg zu einer "berechneten" Biologie.

Originalveröffentlichung:

Christian Korn und Ulrich S. Schwarz
Efficiency of initiating cell adhesion in hydrodynamic flow
Phys. Rev. Lett. 97, 28. September 2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blutkörperchen Gefäßwände Haftfleck Zelle Zelloberfläche Zielgewebe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie