Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ansteckung durch Prionproteine - Authentische Infektiosität experimentell erzeugter Partikel

18.10.2006
Prionproteine können schwere neuronale Degenerationserkrankungen auslösen, wenn sie eine bestimmte dreidimensionale Struktur einnehmen. Nach vorherrschender Theorie sind diese Partikel infektiös, weil sie harmlose Prionproteine - die eine andere Struktur haben - dazu bringen, sich ebenfalls in die gefährliche Form zu falten.

Proteine als alleinige Krankheitserreger waren ein bis dahin unbekanntes Konzept in der Biologie. Zweifel an dieser These tauchten wieder auf, als sich künstlich hergestellte, fehlgefaltete Prionproteine im Experiment als wenig infektiös erwiesen. Ein Forscherteam um Professor Hans Kretzschmar vom Zentrum für Neuropathologie und Prionforschung der Ludwig-Maximilians-Universität (LMU) widerlegt dies jetzt aber in den "Proceedings of the National Academy of Sciences (PNAS)". Die Wissenschaftler schufen auf bestimmtem Trägermaterial missgefaltete Prionproteine, die sich im Versuch als ebenso infektiös erwiesen wie aus erkrankten Gehirnen gewonnene Prionen. Beide Varianten konnten harmlose Prionproteine zur Fehlfaltung anregen und bei gesunden Tieren Prionerkrankungen auslösen.

Proteine können nur dann ihre Funktionen erfüllen, wenn sie sich in ihre jeweils spezifische Form gefaltet haben. Wie wichtig die korrekte dreidimensionale Struktur, und wie gefährlich eine falsche Faltung sein kann, zeigen die Prionproteine. Sie kommen natürlicherweise in ganz bestimmter Form im menschlichen und tierischen Organismus vor. Unter bestimmten Umständen aber nehmen sie eine andere Struktur ein und werden dadurch infektiös, schaffen also aus harmlosen Prionen neue ansteckende Partikel. Durch diesen Vorgang können schwere Leiden entstehen, wie etwa die Creutzfeldt-Jakob-Krankheit beim Menschen oder BSE bei Rindern. Diesen Leiden ist gemein, dass die Infektion über Prionen und damit ausschließlich über Proteine vermittelt wird - was bislang ausschließlich von Prionerkrankungen bekannt ist. Seit kurzem ist es auch möglich, die fehlgefalteten und damit gefährlichen Prionen im Experiment zu erzeugen, anstatt sie nur aus den Gehirnen verstorbener Patienten oder aus Tieren zu gewinnen. Die Ausbeute dabei war aber so gering, dass es kaum möglich war, eine Infektion - also die Umfaltung harmloser Prionen - auszulösen. Die Wissenschaftler der vorliegenden Studie nutzten nun ein relativ neues, von Professor Claudio Soto, University of Texas, entwickeltes Verfahren, die "protein misfolding cyclic amplification (PMCA)" zur Erzeugung fehlgefalteter Prionen - mit durchschlagendem Erfolg. Bei diesem Verfahren genügen selbst kleine Mengen gefährlicher Prionen, um ungleich größere Mengen harmloser Prionen umzuwandeln.

Dies war zum einen ein methodischer Durchbruch, weil auf vergleichsweise einfache Weise missgefaltete Prionproteine geschaffen werden können. "Es ist uns aber auch gelungen, gefährliche Prionproteine experimentell zu erzeugen, die sich in nichts von denen aus erkranktem Gewebe unterscheiden", so Kretzschmar. "Bisher gab es immer eine Diskrepanz zwischen der Menge an Protein und der Infektiosität. Wir haben jetzt gezeigt, dass man diese Diskrepanz aufheben kann, wenn es gelingt, die neu gebildeten Prionpartikel an den Trägerstoff Nitrozellulose gebunden im Gehirn zu behalten. Diese Diskrepanz hatte in der Tat Zweifel an der 'protein-only'-Hypothese hervorgerufen, wonach Prionproteine alleine ansteckend sind. Vermutlich sind die in der PMCA hergestellten infektiösen Partikel sehr klein und werden zum Teil aus dem Gehirn ausgeschwemmt. Unsere Interpretation ist, dass die in der PMCA hergestellten Prionen wirkliche, echte Prionen sind, aber etwas kleiner als die 'natürlichen' Prionproteine. Unsere Prionen zeigen jetzt aber die typischen Charakteristika und die ganz spezifische biologische Infektiosität. So können sie auch bei gesunden Tieren die entsprechenden Erkrankungen auslösen, Die neue Methode ist insgesamt ein wichtiges Werkzeug zur genauen Analyse der Struktur und molekularen Mechanismen der Proteine." (suwe)

Publikation:

"Cell-free formation of misfolded prion protein with authentic prion infectivity", Petra Weber, Armin Giese, Niklas Piening, Gerda Mitteregger, Achim Thomzig, Michael Beekes, and Hans A. Kretzschmar, PNAS, XX. Oktober 2006

Ansprechpartner:

Prof. Hans A. Kretzschmar
Zentrum für Neuropathologie und Prionforschung der LMU
Tel.: 089 / 2180-78000
Fax: 089 / 2180-78036
E-Mail: Hans.Kretzschmar@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Infektiosität Partikel Prionen Prionproteine Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie