Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasende Vereinigung - Membranfusion in Zeitlupe abgelichtet

18.10.2006
Max-Planck-Wissenschaftler entwickeln neue Methoden zur Steuerung und Abildung der Membranfusion

Neue Methoden, mit denen man den Fusionsprozess von Membranen gezielt und kontrolliert in Gang setzen kann, haben Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und des Collège de France entwickelt. Dank digitaler Hochgeschwindigkeitsfotografie gelang es, die Beobachtung dieses dynamischen Vorganges vom Millisekunden- auf den Mikrosekundenbereich auszudehnen. Hierbei stellte sich heraus, dass die Öffnung einer Fusionspore sehr schnell - mit einer durchschnittlichen Geschwindigkeit von einigen Zentimetern pro Sekunde - abläuft. Aus dieser Geschwindigkeit ergibt sich, dass die anfängliche Bildung einer Fusionspore bereits innerhalb von wenigen hundert Nanosekunden abgeschlossen ist. (Proceedings of the National Academy of Sciences of the USA, Online-Version, 16. Oktober 2006). Die kontrollierte Membranfusion ist von Interesse für vielfältige Anwendungsmöglichkeiten in Biotechnologie, Pharmazie und Medizin.


Konfokale Mikroskopieaufnahme eines Lipidvesikels, das zwei fluoreszierende Farbstoffe enthält: (a) Zwei Vesikeln vor der Fusion (äquatorialer Abschnitt); (b) die Vesikeln verschmelzen durch Anwendung eines elektrischen Pulses; und (c) dreidimensionales Bild eines Vesikels mit zwei Domänen, erzeugt durch die Fusion von zwei Membranen, die unterschiedliche Moleküle enthalten. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Die Membranfusion ist ein allgegenwärtiger Prozess in unserem täglichen Leben und essentiell für die Struktur und Dynamik der Zellen unseres Körpers. So ist die Verschmelzung unentbehrlich beim intrazellulären Transport von kleinen Bläschen, so genannten Vesikeln, die für die räumliche Organisation der Zellen, für die Kommunikation zwischen den Zellen und damit auch für die Ausscheidung von Hormonen, Neurotransmittern oder das Zellwachstum verantwortlich sind. Darüber hinaus sind diese Prozesse entscheidend für die Übertragung verschiedener Krankheitserreger wie Viren und Bakterien. Trotz dieser umfassenden Bedeutung sind viele Aspekte der Membranfusion bislang noch nicht aufgeklärt. Diese Situation spiegelt sich einmal im Fehlen gut definierter Methoden wider, mit denen man die Verschmelzung der Membranen kontrolliert auslösen kann. Zum anderen läuft der Fusionsprozess sehr schnell ab und lässt sich bisher mit herkömmlichen Methoden nicht zeitlich verfolgen.

Genau diese Lücke ist jetzt von Wissenschaftlern des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und des Collège de France geschlossen worden. Sie entwickelten zwei unterschiedliche Verfahren für die Fusion von einschaliger Vesikeln. Diese besitzen zwar einen Durchmesser von vielen Mikrometern, bestehen aber nur aus einer einzigen Lipidmembran mit einer Dicke von etwa vier Nanometer. Obwohl eine solche Membran sehr viel dünner ist als das optische Auflösungsvermögen, kann man deren äußere Form mit Hilfe von Phasenkontrast- und konfokaler Mikroskopie beobachten (s. Abb.1). Die experimentellen Verfahren präsentieren zwei verschiedene Methoden, um ein Paar dieser einschaligen Vesikel in engen Kontakt zueinander zu bringen, deren Fusion kontrolliert zu initiieren und die Dynamik des gesamten Vorganges abzubilden.

Im ersten Versuch wurden synthetische Rezeptor-Moleküle - hergestellt von den Partnern des Collège de France - in Lipidmembranen eingesetzt. Nachdem man zwei Vesikel mit zwei Glasmikropipetten angesaugt hatte, konnte man die Vesikelmembranen in Kontakt bringen. Die Membranfusion lösten die Forscher dann durch die Zugabe von Ionen aus. Dabei bilden die Ionen einen Komplex zwischen zwei Rezeptor-Molekülen, die in die gegenüberliegenden Membranen eingebettet sind. Im zweiten Versuch brachten die Forscher dagegen zwei Lipidvesikel durch elektrische Wechsel-Felder in Kontakt miteinander. Sobald der Kontakt eng genug war, konnten sie die Membranfusion durch einen zusätzlichen elektrischen Puls auslösen. Dieser Puls führt direkt zur Bildung von Poren in den gegenüberliegenden Membranen. Die Ränder dieser Poren lagern sich so aneinander, dass es schließlich zur Fusion zwischen den Vesikeln kommt.

Sowohl bei der Verschmelzung mittels Liganden als auch für die Elektrofusion konnten die Wissenschaftler die Dynamik des Vorganges beobachten Dafür verwendeten sie eine sehr schnelle Digitalkamera mit einer Erfassungsrate von 20.000 Bildern pro Sekunde. Das entspricht einer Belichtungszeit von 50 Mikrosekunden. "Bisherige Bild gebende Verfahren waren bislang auf Verschlusszeiten von zig Millisekunden begrenzt. Die neuen Experimente verbesserten die Belichtungszeit um drei Größenordnungen und zeigen, dass der Fusionsprozess überraschend schnell verläuft", sagt Rumiana Dimova, Arbeitsgruppenleiterin am Max-Planck-Institut für Kolloid- und Grenzflächenforschung.

In der Tat erlangt die Pore, die die beiden Vesikel miteinander verbindet, bereits einige hundert Mikrosekunden nach Beginn der Fusion einen Durchmesser von einigen Mikrometern (s. Abb. 1b). Das bedeutet, dass die durchschnittliche Ausdehnungsgeschwindigkeit der Pore bei einigen Zentimetern pro Sekunde liegt und deren anfängliche Bildung bereits innerhalb von 200 Nanosekunden abgeschlossen ist. Diese Werte stehen im Einklang mit Ergebnissen aktueller Computersimulationen, die ebenfalls an diesem Max-Planck-Institut durchgeführt wurden. Somit konnten die Max-Planck-Forscher die Lücke schließen, die zwischen den Zeitskalen der Computersimulationen und denen vorheriger Experimente vorhanden war.

Die in der aktuellen Studie entwickelten experimentellen Fusionsprotokolle können auch auf andere biomimetische Systeme angewendet und für die Konstruktion völlig neuer Systeme eingesetzt werden. So lassen sich mit diesen Methoden auch gemischte Membranen untersuchen, die gleichzeitig Lipide und Rezeptor-Proteine wie z.B. SNAREs enthalten. Ein Beispiel für den Aufbau neuartiger biomimetischer Systeme ist die Bildung von großen Vesikeln mit verschiedenen Membran-Domänen wie in Abb. 1(c). Ein weiteres Beispiel sind Vesikel, die verschiedene chemische Reaktionspartner enthalten. Die Verschmelzung dieser Vesikel setzt die korrespondierenden chemischen Reaktionen in diesen sehr kleinen Reaktionskammern in Gang. Auf diese Weise könnten neue Nanomaterialien synthetisiert werden. Generell hat die kontrollierte Membranfusion viele potentielle Anwendungsmöglichkeiten in der Biotechnik, der Pharmazie und der Medizin.

Originalveröffentlichung:

Christopher K. Haluska, Karin A. Riske, Valérie Marchi-Artzner, Jean-Marie Lehn, Reinhard Lipowsky, and Rumiana Dimova
Timescales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution

Proc. Natl. Acad. Sci. USA 103, 15841-15846 (2006), PNAS published online Oct 16, 2006; doi:10.1073/pnas.0602766103

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Max-Planck-Institut Membran Membranfusion Verschmelzung Vesikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie