Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Regulationsmechanismus entdeckt

10.10.2006
Gießener Biochemiker publizieren Forschungsergebnisse in renommierter Fachzeitschrift "Molecular Cell": Ana Roscic, Andreas Möller, Marco A. Calzado, Florian Renner, Verena C. Wimmer, Ekaterina Gresko, Katharina Schmid Lüdi, and M. Lienhard Schmitz: Phosphorylation dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2, in: Molecular Cell 24, 77-89, October 6, 2006.

Vor einigen Jahren gelang es, sämtliche Gene des Menschen zu kartieren und in ihrem Aufbau zu bestimmen. Einige dieser Gene werden in allen Zellen des menschlichen Körpers abgelesen, andere können je nach Bedarf an- oder ausgeschaltet werden. Die Mechanismen, die zu diesem An- oder Ausschalten von Genen führen, sind nur unzulänglich verstanden und werden momentan weltweit von zahlreichen Wissenschaftlern untersucht.

Diese Schaltvorgänge sind äußerst komplex und werden unter maßgeblicher Beteiligung von Eiweißmolekülen (Proteinen) vermittelt. Nun ergibt sich allerdings die nächste Frage: Woher weiß das regulatorische Protein, wann es welches Gen regulieren soll? Um dieses Problem zu lösen, bedient sich die Natur einer Reihe von Tricks. Einige Proteine sind darauf spezialisiert, sich mit anderen Proteinen zu verknüpfen und damit ihre Eigenschaften zu verändern.

Die Arbeitsgruppe von Prof. Lienhard Schmitz am Biochemischen Institut des Fachbereichs Medizin der Justus-Liebig-Universität Gießen fand heraus, dass die unverknüpfte Form eines Regulatorproteins zur Aktivierung von Genen führt, während die verknüpfte Form im Abschalten von Genen resultiert. Der Verknüpfungsvorgang ist also ein zentraler Schalter, der die Entscheidung zwischen An- oder Abschalten von Genen vermittelt. Allerdings bleibt die Frage offen, wie denn nun der Verknüpfungsvorgang selber reguliert ist, mit anderen Worten: Wer reguliert den Regulator? Wie die Gießener Arbeitsgruppe nun in einem in der Zeitschrift "Molecular Cell" erscheinenden Artikel weiter darlegt, ist diese Verknüpfung ihrerseits ein streng regulierter Prozess. Dabei stellt die Aktivierung des Regulatorproteins selbst die Weichen, ob es selber verknüpft wird (also Gene reprimiert) oder die unverknüpfte Form vorzieht, was in einer Genaktivierung resultiert. Die Gießener Arbeitsgruppe hofft, mit diesen Ergebnissen auch ein vertieftes Verständnis der Vorgänge zu erreichen, die der Fehlregulation von Genen bei Krankheitsprozessen zugrunde liegen.

... mehr zu:
»Gen »Molecular »Protein

Die Forschungsergebnisse der Gießener Biochemiker wurden kürzlich in der renommierten Fachzeitschrift "Molecular Cell" veröffentlicht: Ana Roscic, Andreas Möller, Marco A. Calzado, Florian Renner, Verena C. Wimmer, Ekaterina Gresko, Katharina Schmid Lüdi, and M. Lienhard Schmitz: Phosphorylation dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2, in: Molecular Cell 24, 77-89, October 6, 2006.

Kontakt:

Prof. Dr. Lienhard Schmitz
Biochemisches Institut
Fachbereich Medizin
Friedrichstraße 24, 35392 Gießen
Telefon: 0641 99-47570
E-Mail: Lienhard.Schmitz@biochemie.med.uni-giessen.de

Christel Lauterbach | idw
Weitere Informationen:
http://www.uni-giessen.de/

Weitere Berichte zu: Gen Molecular Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten