Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knorpel, maßgeschneidert aus körpereigenen Stammzellen

25.09.2006
Leipziger Interdisziplinäres Zentrum für Bioinformatik koordiniert vom BMBF gefördertes neues Projekt

An der Universität Leipzig startete im August ein neues Projekt der Stammzellforschung. Ziel des vom Bundesministerium für Bildung und Forschung mit 1,6 Millionen Euro unterstützten, drei Jahre laufenden Projektes ist die Entwicklung eines Bioreaktors, der die kostengünstige, automatisierte Produktion von Gelenkknorpelersatzgewebe aus Stammzellen des jeweiligen Patienten ermöglicht.

Kleiner als ein Euro sind die rosa Gel-Plättchen, die auf einer kaum handtellergroßen Scheibe für ihren Einsatz im Bioreaktor angeordnet werden. Und auch dieser Reaktor würde in jede Aktenmappe passen. "Unser Ziel ist es, dass solch ein Bioreaktor in jedem Krankenhaus zum Einsatz kommen kann", erläutert Ronny Schulz, der Entwicklungsingenieur des Gerätes vom Biotechnologisch-Biomedizinischen Zentrum (BBZ) der Universität Leipzig und beschreibt dessen Funktionsweise: "Im OP werden dem Patienten aus dem Beckenkamm Stammzellen entnommen, aufgereinigt und unter sterilen Bedingungen in dieses Gel eingebettet. Das fungiert dann als Gerüst für die zu Knorpelgewebe heranwachsenden Stammzellen." Diese ganz speziellen Körperzellen sind anfangs noch relativ flexibel in der Rolle, die sie im Organismus übernehmen könnten. So könnte aus ihnen zum Beispiel Knorpel-, Knochen- aber auch Fettgewebe entstehen. "Unter definierten Bedingungen jedoch, kann drei Wochen später funktionelles Knorpelgewebe dem Bioreaktor entnommen und dem Patienten an die geschädigten Gelenkareale verpflanzt werden."

Nun ist die Verpflanzung von körpereigenem Knorpelersatzgewebe keine medizinische Neuheit mehr. Schon seit Jahren transplantieren es Chirurgen von einer weniger beanspruchten Stelle des Gelenks auf eine mit Defekten. Auch die Vermehrung von Knorpelgewebe im Labor und dessen Verwendung als "Flicken" ist längst Praxis. Allerdings haben dabei bisher lediglich vorhandene Knorpelzellen neue Knorpelzellen produziert. "Diese Implantate haben jedoch - ganz abgesehen davon dass man für deren Erzeugung intaktes Gewebe angreifen muss - nur begrenzte Einheilungschancen", so Schulz . "Wesentlich größeres Potential erhoffen wir uns von der Knorpelregeneration aus körpereigenen Stammzellen."

Um diese komplexe Aufgabe zu lösen, kooperiert ein Konsortium von Stammzellbiologen, Biophysikern und Bioinformatikern mit der Klinik für Unfall- und Wiederherstellungschirurgie der Universität Leipzig und der Industrie. "Hier kommen Leipziger Innovationen aus den Bereichen Laserphysik, Lipid- und Proteinanalyse sowie der akustischen Mikroskopie erstmals in der Stammzellbiologie zum Tragen", umreißt Prof. Markus Löffler das Verbundprojekt am Leipziger Interdisziplinären Zentrum für Bioinformatik, das er initiiert hat. Es trägt den Namen MS CartPro - die Abkürzung von Monitoring and Steering of Cartilage Production (Beobachtung und Steuerung der Produktion von Knorpel)

Bioreaktoren zur Knorpelproduktion wurden bereits am BBZ in der Gruppe von Prof. Augustinus Bader entwickelt und patentiert. Innerhalb des keimdicht verschlossenen Innenraumes dieser Reaktoren können durch ein externes Magnetfeld die Druckverhältnisse verändert werden, was einer Belastung des Knorpels im sich bewegenden Gelenk gleichkommt. Das Neuland auf das sich die Leipziger Forscher jetzt begeben, ist folglich weniger die Möglichkeit der Knorpelherstellung als die Automatisierung der Abläufe. Und die wiederum verlangt nach stetiger Kontrolle. Um diese zu garantieren "belauschen" die Forscher die Stammzellen beim Wachsen. Sie nutzen dazu ein ebenfalls in Leipzig entwickeltes akustisches Mikroskop, das Schallwellen statt Lichtwellen zur Bildgebung nutzt.

Doch nicht nur Menschen denen Knorpelgewebe implantiert werden soll, können vom Bioreaktor profitieren, hofft Schulz: "An dem aus den Stammzellen erzeugten Gewebe kann auch die ganz spezifische Reaktion desselben auf ein Medikament getestet werden, sozusagen stellvertretend für den Patienten und ohne Risiko."

Für Patienten, die schon jetzt an Knie- oder Hüftgelenksschmerzen leiden, lohnt jedoch das Warten auf den maßgeschneiderten Knorpel-"Flicken" aus eigenen Stammzellen kaum, denn noch wird Basisarbeit geleistet. "In den drei Jahren, in denen das neue Projekt läuft, wollen wir erreichen, dass unsere Bioreaktoren routinierte Abläufe beherrschen", erläutert Prof. Löffler den ungefähren Zeitplan. "Der nächste Schritt werden Großtierstudien mit Schafen sein, deren Kniegelenke den menschlichen sehr ähnlich sind. Das dürfte dann weitere drei Jahre in Anspruch nehmen. Und erst danach, also frühestens in sechs Jahren, beginnen die ersten Studien am menschlichen Patienten."

Weitere Informationen:
Dr. Jörg Galle
Telefon: 0341 97-16674
E-Mail: galle@izbi.uni-leipzig.de

Dr. Bärbel Adams | Universität Leipzig
Weitere Informationen:
http://www.izbi.uni-leipzig.de

Weitere Berichte zu: Bioreaktor Knorpel Knorpelgewebe Reaktor Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie

Kleinste Teilchen aus fernen Galaxien!

22.09.2017 | Physik Astronomie