Struktur eines Ribosom-Antibiotikum-Komplexes aufgeklärt

A: Überblick über die Bindung des Kasugamycins (Ksg, rot) an die kleine 30S-Untereinheit des Ribosoms (grau) von T. thermophilus. Die mRNA ist grün dargestellt, die Initiator-tRNA orange. B: Detaildarstellung der Überlappung des Kasugamycins mit der mRNA an der Bindungsstelle des Ribosoms. Die nicht korrekt ans Ribosom gebundene mRNA kann nicht mehr mit der tRNA wechselwirken. Dadurch wird auch die Bindung der tRNA an die 30S-Untereinheit des Ribosoms verhindert. Abbildung: MPI für molekulare Genetik

Einem Team von Wissenschaftlern des Berliner Max-Planck-Instituts für molekulare Genetik und des RIKEN Instituts in Japan ist es gelungen, die Struktur der kleinen ribosomalen Untereinheit des Bakteriums Thermus thermophilus mit dem daran gebundenen Antibiotikum Kasugamycin aufzuklären.

In der aktuellen Ausgabe der Fachzeitschrift Nature Structural and Molecular Biology beschreiben die Forscher, wie jeweils zwei Kasugamycin-Moleküle die mRNA-Bindungsstelle des Ribosoms blockieren und dadurch die Initiation der Proteinbiosynthese verhindern. Die Erkenntnisse der Wissenschaftler geben Aufschluß über grundlegende Wirkmechanismen von Medikamenten. Darüber hinaus hoffen die Forscher, dass ihre Arbeit große Auswirkung auf die Entwicklung wirkungsvollerer Antibiotika für Medizin und Landwirtschaft hat [Nat Struct Mol Biol. 2006 Sep 24].

Ribosomen sind in allen Zellen für die Bildung der Proteine verantwortlich. Sie setzen sich aus zwei Untereinheiten zusammen, einer kleinen Untereinheit (30S), die für die mRNA-Erkennung und damit für die Übersetzung des genetischen Codes verantwortlich ist, und einer großen Untereinheit (50S), welche die Aminosäuren zu einer Kette verknüpft. Die Bildung von Proteinen ist von vitaler Bedeutung für das Überleben aller Organismen, es bestehen jedoch eine Reihe von Unterschieden zwischen den Ribosomen von Bakterien, Pilzen, Pflanzen und Tieren. Eine genaue Kenntnis des Ablaufs der Proteinsynthese sowie der Struktur der jeweils beteiligten Elemente ist daher unerläßlich für die Entwicklung wirksamer Antibiotika, die beispielsweise nur auf bestimmte Zellarten wie Bakterien oder Pilze einwirken können, ohne die befallenen Wirte (Pflanzen oder Tiere) zu schädigen.

Wissenschaftlern des Berliner Max-Planck-Instituts für molekulare Genetik ist es jetzt in Zusammenarbeit mit einer Arbeitsgruppe des RIKEN Instituts in Japan gelungen, die Struktur der kleinen 30S-Untereinheit des Ribosoms des Bakteriums T. thermophilus aufzuklären, an welche das Antibiotikum Kasugamycin gebunden ist (Abbildung A). Die Forscher unter der Leitung von Dr. Paola Fucini fanden heraus, dass jeweils zwei Kasugamycin-Moleküle an eine funktionell wichtige Region der 30S-Untereinheit binden. Die Moleküle blockieren dadurch die Bindungsstelle für die mRNA, so dass diese nicht mehr richtig an das Ribosom gebunden werden kann (Abbildung B). In der Folge wird auch die Wechselwirkung des Moleküls mit der mRNA gestört, welches die Aminosäuren für die Zusammensetzung der Proteine an das Ribosom herantransportiert („Initiator-tRNA). Auch die Initiator-tRNA kann somit nicht mehr an das Ribosom binden, die Synthese von Proteinen wird dadurch vollständig verhindert.

Die Erkenntnisse der Wissenschaftler sind von großer Bedeutung insbesondere für die Landwirtschaft. Kasugamycin kann die äußere Zellmembran von Bakterien und Pilzen durchdringen, in die Zellen von Pflanzen und Tieren gelangt es jedoch nicht. Es wird daher seit Jahren zur Bekämpfung der sogenannten Blattbräune (Rice Blast Disease) eingesetzt, einer Pilzerkrankung von Reispflanzen, die jedes Jahr zu erheblichen Verlusten in der Landwirtschaft vor allem im asiatischen Raum führt. Die jetzt veröffentlichte Struktur verdeutlicht die genaue Interaktion des Kasugamycins mit der 30S-Untereinheit und erklärt, warum bereits kleine Veränderungen (Mutationen) an der 30S-Untereinheit des Ribosoms eine Resistenz gegenüber dem Antibiotikum bewirken können. Dies eröffnet den Weg für die Entwicklung wirkungsvollerer Antibiotika, mit denen ein Teil der steigenden mikrobiellen Resistenzen überwunden werden könnte.

Originalveröffentlichung:
Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Nierhaus KH, Yokoyama S & Fucini P. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nature Structural and Molecular Biology Sept 24, 2006 (advanced online release)

Weitere Informationen:

Dr. Paola Fucini (nur in englischer Sprache)
Max-Planck-Institut für molekulare Genetik
AG Ribosomen
Ihnestrasse 73-75
D-14195 Berlin
Tel.: 030 / 8413-1691
Fax: 030 / 8413-1594
Email: fucini@molgen.mpg.de
Dr. Patricia Béziat
Max-Planck-Institut für molekulare Genetik
Ihnestrasse 73-75
D-14195 Berlin
Tel.: 030 / 8413-1716
Fax: 030 / 8413-1671
Email: beziat@molgen.mpg.de
Beteiligte Arbeitsgruppen:
* Dr Paola Fucini, Max-Planck-Institut für molekulare Genetik, AG Kristallographie von Ribosomen, Berlin

* Prof. Dr. Knud H. Nierhaus, Max-Planck-Institut für molekulare Genetik, AG Funktion von Ribosomen, Berlin

* Prof. Shigeyuki Yokoyama, RIKEN Genomic Sciences Center, Yokohama, Japan

Media Contact

Dr. Patricia Beziat Max-Planck-Gesellschaft

Weitere Informationen:

http://www.molgen.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer