Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur eines Ribosom-Antibiotikum-Komplexes aufgeklärt

25.09.2006
Wissenschaftlerteam aus Berlin und Japan beschreibt Wirkmechanismus des Antibiotikums Kasugamycin durch Blockade der kleinen ribosomalen Untereinheit

Einem Team von Wissenschaftlern des Berliner Max-Planck-Instituts für molekulare Genetik und des RIKEN Instituts in Japan ist es gelungen, die Struktur der kleinen ribosomalen Untereinheit des Bakteriums Thermus thermophilus mit dem daran gebundenen Antibiotikum Kasugamycin aufzuklären.


A: Überblick über die Bindung des Kasugamycins (Ksg, rot) an die kleine 30S-Untereinheit des Ribosoms (grau) von T. thermophilus. Die mRNA ist grün dargestellt, die Initiator-tRNA orange. B: Detaildarstellung der Überlappung des Kasugamycins mit der mRNA an der Bindungsstelle des Ribosoms. Die nicht korrekt ans Ribosom gebundene mRNA kann nicht mehr mit der tRNA wechselwirken. Dadurch wird auch die Bindung der tRNA an die 30S-Untereinheit des Ribosoms verhindert. Abbildung: MPI für molekulare Genetik

In der aktuellen Ausgabe der Fachzeitschrift Nature Structural and Molecular Biology beschreiben die Forscher, wie jeweils zwei Kasugamycin-Moleküle die mRNA-Bindungsstelle des Ribosoms blockieren und dadurch die Initiation der Proteinbiosynthese verhindern. Die Erkenntnisse der Wissenschaftler geben Aufschluß über grundlegende Wirkmechanismen von Medikamenten. Darüber hinaus hoffen die Forscher, dass ihre Arbeit große Auswirkung auf die Entwicklung wirkungsvollerer Antibiotika für Medizin und Landwirtschaft hat [Nat Struct Mol Biol. 2006 Sep 24].

Ribosomen sind in allen Zellen für die Bildung der Proteine verantwortlich. Sie setzen sich aus zwei Untereinheiten zusammen, einer kleinen Untereinheit (30S), die für die mRNA-Erkennung und damit für die Übersetzung des genetischen Codes verantwortlich ist, und einer großen Untereinheit (50S), welche die Aminosäuren zu einer Kette verknüpft. Die Bildung von Proteinen ist von vitaler Bedeutung für das Überleben aller Organismen, es bestehen jedoch eine Reihe von Unterschieden zwischen den Ribosomen von Bakterien, Pilzen, Pflanzen und Tieren. Eine genaue Kenntnis des Ablaufs der Proteinsynthese sowie der Struktur der jeweils beteiligten Elemente ist daher unerläßlich für die Entwicklung wirksamer Antibiotika, die beispielsweise nur auf bestimmte Zellarten wie Bakterien oder Pilze einwirken können, ohne die befallenen Wirte (Pflanzen oder Tiere) zu schädigen.

Wissenschaftlern des Berliner Max-Planck-Instituts für molekulare Genetik ist es jetzt in Zusammenarbeit mit einer Arbeitsgruppe des RIKEN Instituts in Japan gelungen, die Struktur der kleinen 30S-Untereinheit des Ribosoms des Bakteriums T. thermophilus aufzuklären, an welche das Antibiotikum Kasugamycin gebunden ist (Abbildung A). Die Forscher unter der Leitung von Dr. Paola Fucini fanden heraus, dass jeweils zwei Kasugamycin-Moleküle an eine funktionell wichtige Region der 30S-Untereinheit binden. Die Moleküle blockieren dadurch die Bindungsstelle für die mRNA, so dass diese nicht mehr richtig an das Ribosom gebunden werden kann (Abbildung B). In der Folge wird auch die Wechselwirkung des Moleküls mit der mRNA gestört, welches die Aminosäuren für die Zusammensetzung der Proteine an das Ribosom herantransportiert ("Initiator-tRNA). Auch die Initiator-tRNA kann somit nicht mehr an das Ribosom binden, die Synthese von Proteinen wird dadurch vollständig verhindert.

Die Erkenntnisse der Wissenschaftler sind von großer Bedeutung insbesondere für die Landwirtschaft. Kasugamycin kann die äußere Zellmembran von Bakterien und Pilzen durchdringen, in die Zellen von Pflanzen und Tieren gelangt es jedoch nicht. Es wird daher seit Jahren zur Bekämpfung der sogenannten Blattbräune (Rice Blast Disease) eingesetzt, einer Pilzerkrankung von Reispflanzen, die jedes Jahr zu erheblichen Verlusten in der Landwirtschaft vor allem im asiatischen Raum führt. Die jetzt veröffentlichte Struktur verdeutlicht die genaue Interaktion des Kasugamycins mit der 30S-Untereinheit und erklärt, warum bereits kleine Veränderungen (Mutationen) an der 30S-Untereinheit des Ribosoms eine Resistenz gegenüber dem Antibiotikum bewirken können. Dies eröffnet den Weg für die Entwicklung wirkungsvollerer Antibiotika, mit denen ein Teil der steigenden mikrobiellen Resistenzen überwunden werden könnte.

Originalveröffentlichung:
Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Nierhaus KH, Yokoyama S & Fucini P. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nature Structural and Molecular Biology Sept 24, 2006 (advanced online release)

Weitere Informationen:

Dr. Paola Fucini (nur in englischer Sprache)
Max-Planck-Institut für molekulare Genetik
AG Ribosomen
Ihnestrasse 73-75
D-14195 Berlin
Tel.: 030 / 8413-1691
Fax: 030 / 8413-1594
Email: fucini@molgen.mpg.de
Dr. Patricia Béziat
Max-Planck-Institut für molekulare Genetik
Ihnestrasse 73-75
D-14195 Berlin
Tel.: 030 / 8413-1716
Fax: 030 / 8413-1671
Email: beziat@molgen.mpg.de
Beteiligte Arbeitsgruppen:
* Dr Paola Fucini, Max-Planck-Institut für molekulare Genetik, AG Kristallographie von Ribosomen, Berlin

* Prof. Dr. Knud H. Nierhaus, Max-Planck-Institut für molekulare Genetik, AG Funktion von Ribosomen, Berlin

* Prof. Shigeyuki Yokoyama, RIKEN Genomic Sciences Center, Yokohama, Japan

Dr. Patricia Beziat | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.molgen.mpg.de

Weitere Berichte zu: 30S-Untereinheit Antibiotikum Bakterium Kasugamycin Protein Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten