Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Schlüsselfunktion von Enzym im Nervensystem entdeckt - wichtig für Entwicklung von Alzheimer-Medikamenten

22.09.2006
Seit die Wissenschaft die Entstehungsmechanismen der Alzheimer-Krankheit aufgedeckt hat, die zum Untergang von Nervenzellen führen, arbeiten Pharmaforscher daran, Hemmstoffe gegen diese schwere Demenzerkrankung zu entwickeln.

Jetzt haben Forscher der Ludwig-Maximilians-Universität (LMU) München und des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch entdeckt, dass ein Enzym, das dabei eine entscheidende Rolle spielt, eine weitere Schlüsselfunktion bei der Entwicklung des Nervensystems hat.


Schnitt durch die Fasern eines Ischiasnervs unter dem Elektronenmikroskop: Die Nervenzellenfortsätze (rosa gefärbt) im rechten Bild sind nur unvollständig mit der isolierenden Myelinschicht ummantelt (blau gefärbt), da das Gen für das Enzym BACE1, das diesen Prozess steuert, ausgeschaltet ist. Die Nervenfasern links haben eine dicke Myelinschicht (dunkel umrandet), hier ist das Gen für BACE1 aktiv.
Bild: Dr. Alistair Garratt/Copyright: MDC

Das Enzym beta secretase (kurz BACE1) sorgt dafür, dass die Fortsätze von Nervenzellen ähnlich einem Stromkabel mit einer Isolierschicht, dem Myelin, ummantelt werden, so dass Erregungen rasch ins Gehirn gelangen. Die Entdeckung von Dr. Michael Willem (LMU), Dr. Alistair Garratt, Prof. Carmen Birchmeier (beide MDC) und Prof. Christian Haass (LMU) hat auch Auswirkungen auf die Entwicklung von Alzheimer-Medikamenten. Forscher hatten nämlich in Versuchen mit genetisch veränderten Mäusen zeigen können, dass die Alzheimer Krankheit nicht ausbricht, wenn das Gen für BACE1 blockiert wird. Jetzt konnten die Forscher in München und Berlin jedoch nachweisen, dass sich die Myelinschicht bei neugeborenen Mäusen mit blockiertem BACE1-Gen nur unvollständig ausbildet, was zu Nervenschäden führen kann. "Damit haben wir erstmals die Möglichkeit, bei der Entwicklung von Hemmstoffen gegen die Alzheimer-Krankheit Nebenwirkungen genau zu beobachten", erläutert Prof. Haass die Bedeutung der Arbeit. Sie ist jetzt in Science Express, der online-Ausgabe der amerikanischen Fachzeitschrift Science, erschienen.

Alzheimer ist eine Erkrankung des Alters. Dabei verursachen unlösliche Eiweißbruchstücke, Amyloid genannt, den allmählichen Untergang von Nervenzellen. Diese Bruchstücke entstehen, weil eine molekulare Schere, beta-secretase oder BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) genannt, sie aus einem Vorläuferprotein, dem APP (amyloid precursor protein), herausschneidet. Warum BACE1 APP zerschneidet, ist noch völlig unklar. Wird das Gen für BACE1 gehemmt, wird APP nicht zerteilt und es entsteht kein Alzheimer.

Doch die Forscher entdeckten, dass die isolierende Myelinschicht um die Nervenfortsätze sich unvollständig ausbildet, wenn sie das BACE1-Gen blockieren. Auch die kleinen schmerzempfindlichen Nervenfasern, die sich zu so genannten Remak-Fasern bündeln, sind nicht mehr vollständig ummantelt. Stattdessen ist die nicht zerschnittene Form eines anderen Proteins, Neuregulin 1 (Typ III), verstärkt in den Nervenzellen (Neuronen) nachweisbar.

Dr. Alistair Garratt und Prof. Carmen Birchmeier hatten vor einigen Jahren als erste zeigen können, dass die Nervenzellen Neuregulin 1 (Typ III) bilden, um so genannte Schwann`sche Zellen, eine Gruppe von Gliazellen, zu den Nervenfortsätzen zu locken. Dort bilden diese Gliazellen später die Myelinschicht.

Wie die MDC-Forscher jetzt zeigen konnten, steuert auch BACE1 die Bildung der Myelinschicht. Ausserdem entdeckten Dr. Willem und Prof. Haass in München, dass BACE1 eine spezifische Stelle in Neuregulin 1 erkennt und schneidet. Anders als bei der Entstehung von Alzheimer, wo die Zerschneidung des Proteins APP böse Folgen hat, scheint BACE1 den Lockstoff Neuregulin zerteilen zu müssen, damit die Schwann`schen Zellen dicke Myelinschichten aufbauen können. Damit haben die Forscher eine der physiologischen Funktionen von BACE1 im Organismus entdeckt.

Die Neuronen von neugeborenen Mäuse bilden sehr viel BACE1, um die Nervenfortsätze mit Myelin zu umhüllen. "BACE1 hat also auch positive Funktionen, nicht nur schlechte", erläutert Dr. Garratt die Ergebnisse dieser Arbeit. Fehlt die Myelinschicht oder ist sie nur unvollständig ausgebildet, können Nervenschäden entstehen, wie die Forscher in den neugeborenen Mäusen, bei denen das BACE1-Gen geblockt war, beobachteten. "Wir haben damit das Tor von der Entwicklungsbiologie zu den neurodegenerativen Erkrankungen aufgestoßen", sagt Dr. Garratt.

Nach Ansicht der Forscher dürfte die Hemmung von BACE1 im erwachsenen Tier keine große Auswirkung auf die Myelinisierung der peripheren Nerven haben, da das Neuregulin-1-Signalübertragungssystem nicht mehr für die Erhaltung der Myelinscheiden benötigt wird. Die Entschlüsselung der physiologischen Funktion von BACE1 sollte es jetzt aber ermöglichen, BACE1-Hemmer zu entwickeln, die ausschliesslich die Entstehung von Amyloid hemmen.

*Control of Peripheral Nerve Myelination by the beta-Secretase BACE1
Michael Willem1, Alistair N. Garratt 2*, Bozidar Novak1, Martin Citron3, Steve Kaufmann3, Andrea Rittger4, Paul Saftig4, Bart DeStrooper5, Carmen Birchmeier2 and Christian Haass1*
1Adolf Butenandt-Institute, Dept. of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Schillerstr. 44; Ludwig-Maximilians-University, 80336 Munich, Germany. 2Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10; 13092 Berlin, Germany. 3Amgen Inc., Departments of Neuroscience (MC) and Pathology (SK) ; Thousand Oaks, CA, USA. 4Biochemical Institute, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany. 5Center for Human Genetics, KUL, VIB, Herestraat 49, 3000 Leuven, Belgium.

*To whom correspondence should be addressed E-mail: chaass@med.uni-muenchen.de, E-mail: agarratt@mdc-berlin.de

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Luise Dirscherl
Ludwig-Maximilians-Universität München
Leitung Kommunikation und Presse
Pressesprecherin des Rektors
Leopoldstr. 3, Zi. 407
80802 München
Phone: +49 (0) 89 2180-2706
Fax: +49 (0) 89 2180-3656
Mobil: +49 (0) 173 96 73 429
e-Mail: dirscherl@lmu.de

Barbara Bachtler | MDC-Berlin
Weitere Informationen:
http://www.mdc-berlin.de
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm
http://www.lmu.de/presse

Weitere Berichte zu: APP Alzheimer BACE1 Enzym Myelinschicht Mäuse Nervenzelle Neuregulin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie