Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben ohne Mund, Magen und Darm

19.09.2006
Max-Planck-Wissenschaftler entschlüsseln die Details einer symbiotischen Lebensgemeinschaft

Zahlreiche Pflanzen und Tiere - einschließlich des Menschen - werden von Mikroorganismen besiedelt, die nützliche Funktionen (z.B. die Erschließung oder Verdauung von Nährstoffen) für ihre Wirte übernehmen. Im Gegenzug stellt ihnen der Wirt geeignete Lebensbedingungen zur Verfügung. Solche engen gegenseitigen Vorteilsgemeinschaften nennt man Symbiosen. Forschern vom Max-Planck-Institut für marine Mikrobiologie in Bremen und vom Joint Genome Institute in den USA ist es jetzt gelungen, die Genome von gleich vier bakteriellen Symbionten aus dem Inneren des marinen Wurms Olavius algarvensis mithilfe einer so genannten Metagenomanalyse zu entschlüsseln. Das ist die bislang größte Studie dieser Art an einer symbiontischen Lebensgemeinschaft. Sie bildet einen wichtigen Grundstein für die Analyse anderer komplexer Symbiosen, wie zum Beispiel der Endflora des menschlichen Darms (Nature, Advanced Online Publication, 17. September 2006).


Olavius algarvensis unter dem Mikroskop
Bild: MPI Bremen und Hydra Institut, Elba, C. Lott

Olavius algarvensis ist ein mariner Oligochaet (Wenigborster), der in den oberen zwanzig Zentimetern im sandigen Meeresboden der flachen Küstengewässer vor der Mittelmeerinsel Elba beheimatet ist. Nicole Dubilier und ihre Mitarbeiter aus der Symbiosegruppe vom Max-Planck-Institut in Bremen forschen seit Jahren auf diesem Gebiet. Die anatomische Besonderheit des Wurms ist, dass er nicht nur sein Verdauungssystem komplett reduziert hat - also weder Mund, Magen noch Darm hat - sondern auch keine nierenähnliche Organe (Nephridien) besitzt. Während die Reduktion des Verdauungssystems als Anpassung an symbiontische Mikroorganismen auch von anderen Tieren bekannt ist, sind darmlose Oligochaeten die einzige bekannte Wirtsgruppe, die auch ihre Ausscheidungssysteme reduziert haben. Das bedeutet für den Wurm, dass alle Prozesse, die mit Nahrungsaufnahme und Abfallentsorgung zu tun haben, von seinen Symbionten erledigt werden müssen. Die Forscher wollten nun herausfinden, wie diese wesentlichen Wirtsaufgaben an die Symbionten ausgelagert werden konnten, schließlich handelt es sich hierbei um ein wunderbares Beispiel für "Outsourcing" von Energiegewinn und Abfallentsorgung.

Eine Symbiose detailliert zu untersuchen, ist oftmals eine besondere Herausforderung, da sich die meisten symbiontischen Mikroorganismen nicht isoliert züchten lassen. Mit der so genannten Metagenomanalyse ist es jedoch möglich, die Einzel-Genome (das Genom ist die Gesamtheit der Gene eines Organismus) verschiedener Organismen zu isolieren, ohne die Organismen selbst zu isolieren. Doch, wie lässt sich das Gemisch an Genomen aus der Umweltprobe einzelnen Arten zuordnen? In der klassischen Genomanalyse sequenziert man die Erbsubstanz einer bestimmten Art mithilfe etablierter Methoden, und jedes Jahr publizieren die Wissenschaftler in den Datenbanken hunderte verschiedener Genome. Der klassische Ansatz funktioniert jedoch nicht bei einem Gemisch von verschiedenen Organismen, denn die Zuordnung der Sequenzen ist nicht klar erkennbar. Dieses Problem lässt sich an einem Beispiel aus der Textanalyse veranschaulichen: Man stelle sich vor, die Bücher verschiedener Autoren seien hoffnungslos durcheinander geraten. Die Texte liegen nur noch in Bruchstücken vor. Aufgabe ist es nun, die ursprünglichen Werke wiederherzustellen. Da jeder Autor einen anderen Schreibstil bevorzugt, kann man die Ursprungstexte mithilfe einer statistischen Analyse der Bruchstücke rekonstruieren. Im Genom-"Text" gibt es jedoch nur vier verschiedene Buchstaben A, G, C, T. Und diese Buchstaben hängen ohne "Punkt" und "Komma" aneinander.

Hanno Teeling aus der Arbeitsgruppe Mikrobielle Genomik von Prof. Frank Oliver Glöckner gelang es nun, mit einem neuen mathematischen Algorithmus, einem Binning-Verfahren, dieses Problem zu lösen. Die relativen Häufigkeiten aller 64 möglichen Dreiergruppen von A, G, C und T, aller 256 möglichen Viererkombinationen der Bausteine und die Häufigkeit von G und C innerhalb eines genormten Genomabschnitts unterscheiden sich deutlich je nach Organismenart. Damit ließen sich die Bruchstücke in einzelne Untergruppen, so genannte Bins, differenzieren. Die Fragmente konnten zusammengesetzt, gelesen und somit die einzelnen Genome rekonstruiert werden. Damit hatten die Forscher den Schlüssel in der hand, um die jeweiligen Stoffwechsel der Symbionten zu rekonstruieren und zu zeigen, welche Stoffwechselwege je nach Umwelteinfluss aktiviert werden können.

Das Ergebnis: Zwei Schwefelbakterien (Gammaproteobakterien) und zwei Sulfatreduzierer (Deltaproteobakterien) kommen gemeinsam in dem Wurm vor. Die Sulfatreduzierer produzieren reduzierte Schwefelverbindungen, die die Schwefeloxidierer als Energiequelle verwenden können. So füttern sich die Symbionten in einem syntrophen Schwefelzyklus gegenseitig. Überraschenderweise können alle vier Symbionten wie Pflanzen Kohlendioxid fixieren, der Wurm hat sich also ein regelrechtes endosymbiotisches Kraftwerk zugelegt. An der Zersetzung von giftigen Stoffwechselendprodukten wie Harnstoff und Ammonium sind auch alle vier Symbionten beteiligt und tragen damit zum Recycling von wertvollem Stickstoff bei.

"Der kleine Wurm macht vor, wie begrenzte Ressourcen durch das Zusammenwirken von aufeinander abgestimmten Mikrobengemeinschaften auf kleinstem Raum effizient genutzt werden können" sagt Nicole Dubilier. So könnte die Olavius-Symbiose ein Modell für eine sich nahezu selbst erhaltende Biosphäre sein. Vergleichbare Systeme im größeren Maßstab werden intensiv erforscht, um zum Beispiel längere interplanetare Raumfahrten wie die geplante Reise zum Mars bewältigen zu können.

[MS/CB]

Originalveröffentlichung:

Tanja Woyke, Hanno Teeling, Natalia N. Ivanova, Marcel Hunteman, Michael Richter, Frank Oliver Gloeckner, Dario Boffelli, Iain J. Anderson, Kerrie W. Barry, Harris J. Shapiro, Ernest Szeto, Nikos C. Kyrpides, Marc Mussmann, Rudolf Amann, Claudia Bergin, Caroline Ruehland, Edward M. Rubin, Nicole Dubilier
Symbiosis insights through metagenomic analysis of a microbial consortium
Nature, Advanced Online Publication, September 17, 2006.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Darm Genom Magen Mikroorganismus Organismus Symbionten

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie