Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Wissenschaftler untersuchen, wie sich Bakterien in Strömungen an Oberflächen festklammern

15.09.2006
Elastische Haar-ähnliche Strukturen auf ihrer Oberfläche helfen Bakterien, sich an Schleimhäuten im menschlichen Körper festzuklammern. Wie dieses erstaunliche System funktioniert, konnten Wissenschaftler der ETH Zürich und der University of Washington in Seattle jetzt aufklären.

Auf ihrer Oberfläche besitzen viele Bakterien wie beispielsweise E. coli Haar-ähnliche Strukturen, so genannte Fimbriae. An deren Spitzen tragen diese FimH, ein Andockprotein, das in ungewöhnlicher Weise an Zuckermoleküle bindet, die sich auf der Oberfläche von Schleimhäuten im menschlichen Körper befinden. Wissenschaftler der ETH Zürich und der University of Washington in Seattle untersuchten nun im Detail, wie sich das Bakterium E. coli an Schleimhäute, z.B. in den Harnwegen, festklammert. Die Arbeit erscheint in der September-Ausgabe der PLoS Biology, einer wissenschaftlichen open-access Zeitschrift (www.plos.org).

Zugkraft stärkt Bindung

Die Bindung zwischen dem Andockprotein FimH und dem Zuckermolekül funktioniert ähnlich einer so genannten Chinesischen Fingerfalle, einem Juxspiel, bei welchem die Finger des Spielers in beiden Enden eines kleinen gewobenen Zylinders stecken bleiben, wenn zu schnell am Zylinder gezogen wird. Statt durch die Körperflüssigkeiten weggeschwemmt zu werden, heften sich die Bakterien nur noch stärker an die Schleimhaut und können so eine Infektion verursachen. Die Forschenden konnten nun zeigen, dass für die Wirkungsweise dieser so genannten "catch-bonds" die mechanischen Eigenschaften der Fimbriae eine entscheidende Rolle spielen. Diese winzigen bakteriellen Härchen bestehen aus ineinander greifenden Proteinsegmenten, die eine eng gewickelte Helix mit dem Durchmesser von sieben Nanometer bilden. Die Forschungen ergaben, dass die Fimbriae unter Zug zum Mehrfachen ihrer Originallänge gestreckt werden können. Nimmt der Zug ab, zieht sich die Fimbriae-Helix wieder zusammen und hält so die Spannung auf der Bindung zwischen Bakterium und Schleimhaut. "Die Fimbriae strecken und ziehen sich zusammen, um die plötzlichen Druckunterschiede zu dämpfen, welche durch die schnell wechselnden Fliessbedingungen verursacht werden", erklärt Prof. Viola Vogel vom Departement Materialwissenschaft der ETH Zürich. Dieser Vorgang gewährleistet die Aufrechterhaltung einer optimalen Kraft auf die FimH-Zucker-Bindung, damit diese möglichst lange besteht und nicht bricht.

... mehr zu:
»Bakterium »Bindung »ETH

Bungee-Seile für Bakterien

"Das System streckt sich wie ein Bungee-Seil. Der Mechanismus jedoch beruht auf einem sequentiellen Brechen oder Formen von Bindungen, welche die helikale Fimbriaestruktur stabilisieren", ergänzt Prof. Wendy Thomas von der University of Washington in Seattle. Manu Forero, Doktorand an der ETH Zürich, konnte zeigen, dass diejenige Kraft, bei der sich Strecken und Zusammenziehen der Fimbriae in etwa die Waage halten, jener Kraft entspricht, bei welcher FimH die stabilste Bindung mit den Zuckermolekülen eingeht. Die mechanischen und adhäsiven Eigenschaften des Systems haben sich also gleichzeitig entwickelt, sodass sich die Bakterien auch bei starker Strömung innerhalb von Wirtstieren und Menschen festklammern können.

"Die Forschung an den Fimbriae gibt uns die Möglichkeit, ein im Grunde von der Natur entwickeltes, nanotechnologisches System besser zu verstehen und für mögliche biotechnologische oder andere technische Anwendungen anzupassen", sagt Dr. Evgeni Sokurenko von der University of Washington in Seattle. "Die Arbeit verbessert auch unser Verständnis darüber, wie wir Bakterien bekämpfen können, die sich in Harnwegen oder dem Magen-Darm-Trakt festsetzen."

Weitere Informationen
Prof. Viola Vogel
Departement Materialwissenschaft ETH Zürich
Telefon +41 44 632 08 87
viola.vogel@mat.ethz.ch

Anke Poiger | idw
Weitere Informationen:
http://www.ethz.ch
http://biology.plosjournals.org/perlserv/?request=index-html&issn=1545-7885

Weitere Berichte zu: Bakterium Bindung ETH

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik