Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Zahnrädchen für die Signalübertragung

08.09.2006
Max-Planck-Wissenschaftler und ihre Kollegen von der Universität Tübingen entdecken einen neuen Mechanismus zur Informationsübertragung ins Zellinnere

Damit Bakterienzellen ihre Umgebung wahrnehmen und auf sie reagieren können, müssen sie Informationen über ihre Umgebung in die Zelle weiterleiten. Viele Rezeptorproteine sind bereits bekannt und über den molekularen Mechanismus der Signalübertragung wurde viel spekuliert. Wissenschaftlern vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen und vom Institut für Pharmazie der Universität Tübingen ist es nun gelungen, die Struktur der HAMP-Domäne zu entschlüsseln (Cell, 8.September 2006). Dabei handelt es sich um einen Teilbereich eines Rezeptorproteins, der die extrazelluläre mit der intrazellulären Domäne verbindet und daher eine entscheidende Rolle bei der Signalweiterleitung spielt. Die Struktur offenbart die Fähigkeit der HAMP-Domäne, zwischen zwei Konformationen hin und her zu wechseln. Die Forscher erklären diesen Konformationswechsel mit einer Bewegung, die an die Rotation von vier ineinander greifenden Zahnrädern erinnert.


Die HAMP-Domäne (rot) kann durch Rotation der vier Helices ihre Konformation ändern. Die Bewegung der Helices erinnert an die Rotation von vier Zahnrädern in einem Getriebe, da die Seitenketten im Inneren ineinander greifen. Die HAMP-Domäne ist ein Teil der modular aufgebauten Rezeptorproteine, die in Zellmembranen von Bakterien vorkommen (die einzelnen Module sind in grün, grau, rot und blau dargestellt). In der Abbildung ist ein Rezeptor für die Chemotaxis gezeigt, der das Bewegungsverhalten der Bakterien beeinflusst (oben rechts). Bild: Max-Planck-Institut für Entwicklungsbiologie, Tübingen

Bakterien haben eine Vielzahl sensorischer Systeme entwickelt, um ihre Umwelt wahrzunehmen und darauf zu reagieren. Oft spüren sie damit günstigere, zum Beispiel nährstoffreichere, Umgebungen auf und bewegen sich aktiv darauf zu. Das gezielte Wandern entlang eines chemischen Konzentrationsgradienten bezeichnet man als Chemotaxis. Dabei löst ein Reiz der Umgebung eine vorprogrammierte Verhaltensweise aus. Wie kann man sich Chemotaxis als Reaktion auf einen solchen chemischen Stimulus vorstellen?

Normalerweise zeigen Bakterien ein Bewegungsverhalten, das aus Schwimm- und Taumelbewegungen besteht und die Zelle um ihren momentanen Aufenthaltsort herum torkeln lässt. Gerät die Bakterienzelle in einen Konzentrationsgradienten eines attraktiven Stoffes (z.B. Zucker) und ist in dessen Richtung ausgerichtet, so wird ein Schalter in der Zelle umgelegt: Um dem Gradienten folgen zu können, wird die Schwimmbewegung zeitlich verlängert. Besteht der Gradient weiter, so folgt nach einer kurzen Neuorientierung eine erneute, verlängerte Schwimmbewegung.

Die entsprechenden Schalter befinden sich in der Zellmembran hauptsächlich an den Zellpolen. Dabei handelt es sich um Proteine, die einen in den Außenraum ragenden extrazellulären Teil besitzen, mit dem sie äußere Reize aufnehmen, und einen intrazellulären Teil, der das Signal für die Bewegungsänderung in die Zelle weiterleitet. Diese Rezeptoren bestehen aus verschiedenen Modulen, sodass viele externe Stimuli mit einer Vielzahl von internen Antwortmöglichkeiten kombiniert werden können.

Die Wissenschaftler vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen wollten nun genau wissen, wie Informationen von Außen ins Zellinnere gelangen. Im Fall der Chemotaxis führt die Bindung eines Signalmoleküls an den extrazellulären Teil eines Rezeptors zur Auslösung einer ganzen intrazellulären Reaktionskaskade. An ihrem Ende steht die Phosphorylierung bestimmter Proteine, die den Bewegungsapparat des Bakteriums beeinflussen.

Da der Rezeptor keinen Transport von Signalmolekülen in die Zelle vermittelt, kann das Signal nur auf mechanischem Wege weitergegeben werden, das heißt, es muss zu einer Konformationsänderung im Rezeptor kommen - das wäre die einzig denkbare Möglichkeit der Informationsübertragung von Außen nach Innen. Verschiedene Konformationsänderungen wurden bereits für solche Rezeptoren diskutiert. Aber die Wissenschaftler tappten weitgehend im Dunkeln, da die molekulare Struktur des Moduls unbekannt war, das den extrazellulären mit dem intrazellulären Teil verbindet. Dieses Modul wird HAMP-Domäne genannt.

Andrei Lupas und seine Mitarbeiter konnten nun die Struktur einer HAMP-Domäne mittels NMR-Spektroskopie aufklären. Sie wählten dafür eine HAMP-Domäne aus dem Archaebakterium Archaeoglobus fulgidus, das in heißen Quellen von etwa 100°C lebt. Der Vorteil: Das Protein dieses hyperthermophilen Organismus war bei Raumtemperatur starr und daher für NMR-Untersuchungen geeignet. Bisherige Strukturuntersuchungen waren wohl daran gescheitert, dass die HAMP-Domäne unter Untersuchungsbedingungen rasch zwischen zwei Schalterpositionen hin und her wechselte.

Die Strukturuntersuchungen offenbarten, dass es sich bei der HAMP-Domäne um ein Bündel aus zwei mal zwei parallelen alpha-Helices handelt. Dabei entdeckten die Wissenschaftler eine völlig neuartige, geometrische Anordnung der Seitenketten im Inneren der Helixbündel. Interessanterweise konnte diese Seitenkettengeometrie in Computermodellen durch zahnradartige Drehung der einzelnen Helices in die allgemein bekannte Geometrie überführt werden.

"Wir haben nun vermutet, dass beide Geometrien, das heißt beide Konformationen, je einen Signalzustand repräsentieren und die zahnradartige Helixrotation die gesuchte, mechanische Konformationsänderung zur Signalübertragung darstellt", erklärt Michael Hulko. Durch gezielte Mutationen einzelner Aminosäurereste und mit Unterstützung von Wissenschaftlern aus der Arbeitsgruppe von Joachim Schultz von der Universität Tübingen konnten die Forscher dann zeigen, dass sich die HAMP-Domäne tatsächlich in einen anderen Signalzustand versetzen lässt, wenn man versucht, die herkömmliche Konformation gegenüber der neuartigen zu stabilisieren.

Noch fehlt die Strukturaufklärung der zweiten Schalterstellung, auf deren Existenz alle bisherigen Hinweise deuten. Auch möchten die Wissenschaftler gerne wissen, durch welche Eigenschaften die einzelnen Schalterstellungen stabilisiert werden und wie sich die Leichtigkeit des Umschaltens modulieren lässt. Dieser in Bakterien gefundene Zahnradmechanismus könnte - so ihre Spekulation - auch eine universelle Bedeutung haben.

Originalveröffentlichung:

Michael Hulko, Franziska Berndt, Markus Gruber, Jürgen U. Linder, Vincent Truffault, Anita Schultz, Jörg Martin, Joachim E. Schultz, Andrei Lupas, Murray Coles
The HAMP domain structure implies helix rotation in transmembrane signaling
Cell, 8. September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise