Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man einer Herzmuskelzelle die Luft abdreht

08.09.2006
Physiologen der Universität Jena publizieren wegweisende Forschungsergebnisse zum Herzinfarkt

Herz-Kreislauferkrankungen sind die häufigste Todesursache in den Industriestaaten. Sie sind für fast die Hälfte aller Todesfälle verantwortlich. Deutschlandweit sterben jedes Jahr mehr als 60.000 Menschen an den Folgen eines Herzinfarkts. Dabei blockiert ein Pfropf die Blutgefäße, die normalerweise den Herzmuskel mit Blut versorgen. "Durch diesen Stau wird der Herzmuskel nicht mehr ausreichend mit Sauerstoff und Nährstoffen versorgt und schädliche Stoffwechselprodukte sammeln sich außerhalb der Zelle an", erklärt Prof. Dr. Klaus Benndorf, Direktor des Instituts für Herz-Kreislauf-Physiologie am Klinikum der Friedrich-Schiller-Universität Jena. Im ungünstigsten Fall stirbt durch diesen Prozess - medizinisch auch Ischämie genannt - das betroffene Herzmuskelgewebe ab.

"Worauf diese Ischämieschäden beruhen, ist auf molekularer und zellulärer Ebene bisher nicht ausreichend verstanden", so Prof. Benndorf. Der Grund: Bisher war es den Wissenschaftlern nicht gelungen, wesentliche Funktionen isolierter Zellen unter ischämischen Bedingungen zu studieren. So z. B. die Funktion der Mitochondrien, den "Kraftwerken" der Zelle, die den Sauerstoff verbrauchen oder von so genannten Ionenkanälen. Das sind Eiweiße in den Zellmembranen, durch die bestimmte Ionen fließen können. Bislang wurde vermutet, dass bestimmte Ionenkanäle, die nur für Kalium-Ionen durchgängig sind, wesentlich am Ischämiegeschehen beteiligt sind.

Bisher war es jedoch nicht möglich, diese Vermutung zu überprüfen. "Das Problem bestand bisher darin, definierte ischämische Bedingungen für eine einzelne isolierte Herzmuskelzelle herzustellen und die Sauerstoffzufuhr minutiös genau zu regulieren und so einen Herzinfarkt zu simulieren", erläutert Benndorf. Und genau dieses Problem haben Prof. Benndorf und sein Forscherteam nun gelöst. Zusammen mit dem Jenaer Institut für Fügetechnik und Werkstoffprüfung GmbH entwickelten sie Glaschips, an deren Oberfläche winzige Kammern mit Mikrostrukturtechniken aufgebracht sind. In diese Kammern setzten die Forscher unter dem Mikroskop einzelne Herzmuskelzellen von Mäusen ein. Die Kammern sind nur wenig größer als die Zellen selbst: 150 Mikrometer (Tausendstel Millimeter) lang, 40 Mikrometer breit und 32 Mikrometer tief. In der Kammer sind die Zellen vollständig von nur wenig Nährlösung umschlossen, gerade so wie eine Sardine in einer geöffneten Dose. "Über die umgebende Luft an der Oberseite der Kammer wird die Zelle mit großer Genauigkeit mit Sauerstoff beliefert", erläutert Prof. Benndorf das Prinzip. Dazu lassen die Elektrophysiologen von der Universität Jena mit Wasserdampf gesättigte Luft über die Zellkammer strömen. Wird die Luft durch das Gas Argon ersetzt, sinkt der Sauerstoffgehalt. Je nach Strömungsgeschwindigkeit des Gases lässt sich der Sauerstoffdruck so in definierten Schritten steuern. "So können wir den Zellen sprichwörtlich die Luft abdrehen und sie damit in einen 'Herzinfarkt' mit einem sehr gut definierten Grad treiben", sagt Benndorf.

Diesen bahnbrechenden methodischen Ansatz haben die Jenaer Wissenschaftler kürzlich im renommierten Fachjournal "Circulation Research" publiziert. Die Herausgeber der Zeitschrift würdigten den wissenschaftlichen Stellenwert der Jenaer Publikation mit einem eigenen Editorial. Darin bezeichnet der Autor Benndorfs Methode als einen "technischen Quantensprung". "Eine solche Einschätzung freut uns natürlich sehr", so Benndorf. Zumal der Jenaer Experte für Elektrophysiologie des Herzens mehr als acht Jahre seiner Forschungstätigkeit in diese Entwicklung investiert hat.

Übrigens: Die genannten Kalium-Kanäle, so belegen die nun publizierten Messergebnisse von Prof. Benndorf, zeigen kein Ischämie-spezifisches Verhalten. Stattdessen konnten die Jenaer Forscher u. a. zeigen, mit welcher Dynamik die Herzmuskelzellen unter Sauerstoffmangel so genannte reaktive Sauerstoffradikale freisetzen und wie diese die Funktion der Mitochondrien kontrollieren. Welche Folgen dies für die Herzmuskelzellen hat, das müssen weitere Untersuchungen erst klären. "Es gibt also genügend Stoff für künftige Forschungsprojekte", resümiert Prof. Benndorf.

(Originalarbeit: Ganitkevich V, Reil S, Schwethelm B, Schroeter T, Benndorf K. Dynamic responses of single cardiomyocytes to graded ischemia studied by oxygen clamp in on-chip picochambers. Circulation Research 2006 21; 99 (2): 165-71.)

Kontakt:
Prof. Dr. Klaus Benndorf
Institut für Physiologie II des Klinikums der Friedrich-Schiller-Universität Jena
Kollegiengasse 9, 07743 Jena
Tel.: 03641 / 938861, Fax: 03641 / 938862
E-Mail: Klaus.Benndorf[at]mti.uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Herzinfarkt Herzmuskelzelle Mikrometer Sauerstoff Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau