Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man einer Herzmuskelzelle die Luft abdreht

08.09.2006
Physiologen der Universität Jena publizieren wegweisende Forschungsergebnisse zum Herzinfarkt

Herz-Kreislauferkrankungen sind die häufigste Todesursache in den Industriestaaten. Sie sind für fast die Hälfte aller Todesfälle verantwortlich. Deutschlandweit sterben jedes Jahr mehr als 60.000 Menschen an den Folgen eines Herzinfarkts. Dabei blockiert ein Pfropf die Blutgefäße, die normalerweise den Herzmuskel mit Blut versorgen. "Durch diesen Stau wird der Herzmuskel nicht mehr ausreichend mit Sauerstoff und Nährstoffen versorgt und schädliche Stoffwechselprodukte sammeln sich außerhalb der Zelle an", erklärt Prof. Dr. Klaus Benndorf, Direktor des Instituts für Herz-Kreislauf-Physiologie am Klinikum der Friedrich-Schiller-Universität Jena. Im ungünstigsten Fall stirbt durch diesen Prozess - medizinisch auch Ischämie genannt - das betroffene Herzmuskelgewebe ab.

"Worauf diese Ischämieschäden beruhen, ist auf molekularer und zellulärer Ebene bisher nicht ausreichend verstanden", so Prof. Benndorf. Der Grund: Bisher war es den Wissenschaftlern nicht gelungen, wesentliche Funktionen isolierter Zellen unter ischämischen Bedingungen zu studieren. So z. B. die Funktion der Mitochondrien, den "Kraftwerken" der Zelle, die den Sauerstoff verbrauchen oder von so genannten Ionenkanälen. Das sind Eiweiße in den Zellmembranen, durch die bestimmte Ionen fließen können. Bislang wurde vermutet, dass bestimmte Ionenkanäle, die nur für Kalium-Ionen durchgängig sind, wesentlich am Ischämiegeschehen beteiligt sind.

Bisher war es jedoch nicht möglich, diese Vermutung zu überprüfen. "Das Problem bestand bisher darin, definierte ischämische Bedingungen für eine einzelne isolierte Herzmuskelzelle herzustellen und die Sauerstoffzufuhr minutiös genau zu regulieren und so einen Herzinfarkt zu simulieren", erläutert Benndorf. Und genau dieses Problem haben Prof. Benndorf und sein Forscherteam nun gelöst. Zusammen mit dem Jenaer Institut für Fügetechnik und Werkstoffprüfung GmbH entwickelten sie Glaschips, an deren Oberfläche winzige Kammern mit Mikrostrukturtechniken aufgebracht sind. In diese Kammern setzten die Forscher unter dem Mikroskop einzelne Herzmuskelzellen von Mäusen ein. Die Kammern sind nur wenig größer als die Zellen selbst: 150 Mikrometer (Tausendstel Millimeter) lang, 40 Mikrometer breit und 32 Mikrometer tief. In der Kammer sind die Zellen vollständig von nur wenig Nährlösung umschlossen, gerade so wie eine Sardine in einer geöffneten Dose. "Über die umgebende Luft an der Oberseite der Kammer wird die Zelle mit großer Genauigkeit mit Sauerstoff beliefert", erläutert Prof. Benndorf das Prinzip. Dazu lassen die Elektrophysiologen von der Universität Jena mit Wasserdampf gesättigte Luft über die Zellkammer strömen. Wird die Luft durch das Gas Argon ersetzt, sinkt der Sauerstoffgehalt. Je nach Strömungsgeschwindigkeit des Gases lässt sich der Sauerstoffdruck so in definierten Schritten steuern. "So können wir den Zellen sprichwörtlich die Luft abdrehen und sie damit in einen 'Herzinfarkt' mit einem sehr gut definierten Grad treiben", sagt Benndorf.

Diesen bahnbrechenden methodischen Ansatz haben die Jenaer Wissenschaftler kürzlich im renommierten Fachjournal "Circulation Research" publiziert. Die Herausgeber der Zeitschrift würdigten den wissenschaftlichen Stellenwert der Jenaer Publikation mit einem eigenen Editorial. Darin bezeichnet der Autor Benndorfs Methode als einen "technischen Quantensprung". "Eine solche Einschätzung freut uns natürlich sehr", so Benndorf. Zumal der Jenaer Experte für Elektrophysiologie des Herzens mehr als acht Jahre seiner Forschungstätigkeit in diese Entwicklung investiert hat.

Übrigens: Die genannten Kalium-Kanäle, so belegen die nun publizierten Messergebnisse von Prof. Benndorf, zeigen kein Ischämie-spezifisches Verhalten. Stattdessen konnten die Jenaer Forscher u. a. zeigen, mit welcher Dynamik die Herzmuskelzellen unter Sauerstoffmangel so genannte reaktive Sauerstoffradikale freisetzen und wie diese die Funktion der Mitochondrien kontrollieren. Welche Folgen dies für die Herzmuskelzellen hat, das müssen weitere Untersuchungen erst klären. "Es gibt also genügend Stoff für künftige Forschungsprojekte", resümiert Prof. Benndorf.

(Originalarbeit: Ganitkevich V, Reil S, Schwethelm B, Schroeter T, Benndorf K. Dynamic responses of single cardiomyocytes to graded ischemia studied by oxygen clamp in on-chip picochambers. Circulation Research 2006 21; 99 (2): 165-71.)

Kontakt:
Prof. Dr. Klaus Benndorf
Institut für Physiologie II des Klinikums der Friedrich-Schiller-Universität Jena
Kollegiengasse 9, 07743 Jena
Tel.: 03641 / 938861, Fax: 03641 / 938862
E-Mail: Klaus.Benndorf[at]mti.uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Herzinfarkt Herzmuskelzelle Mikrometer Sauerstoff Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie